PyMC: a modern, and comprehensive probabilistic programming framework in Python
- Autores
- Abril Pla, Oriol; Andreani, Virgile; Carroll, Colin; Dong, Larry; Fonnesbeck, Christopher J.; Kochurov, Maxim; Kumar, Ravin; Lao, Junpeng; Luhmann, Christian C.; Martín, Osvaldo Antonio; Osthege, Michael; Vieira, Ricardo; Wiecki, Thomas; Zinkov, Robert
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- PyMC is a probabilistic programming library for Python that provides tools for constructing and fitting Bayesian models. It offers an intuitive, readable syntax that is close to the natural syntax statisticians use to describe models. PyMC leverages the symbolic computation library PyTensor, allowing it to be compiled into a variety of computational backends, such as C, JAX, and Numba, which in turn offer access to different computational architectures including CPU, GPU, and TPU. Being a general modeling framework, PyMC supports a variety of models including generalized hierarchical linear regression and classification, time series, ordinary differential equations (ODEs), and non-parametric models such as Gaussian processes (GPs). We demonstrate PyMC’s versatility and ease of use with examples spanning a range of common statistical models. Additionally, we discuss the positive role of PyMC in the development of the open-source ecosystem for probabilistic programming.
Fil: Abril Pla, Oriol. No especifíca;
Fil: Andreani, Virgile. Boston University; Estados Unidos
Fil: Carroll, Colin. Google Limited Liability Company (google Llc);
Fil: Dong, Larry. University of Toronto; Canadá
Fil: Fonnesbeck, Christopher J.. No especifíca;
Fil: Kochurov, Maxim. No especifíca;
Fil: Kumar, Ravin. Google Limited Liability Company (google Llc);
Fil: Lao, Junpeng. Google Limited Liability Company (google Llc);
Fil: Luhmann, Christian C.. State University of New York. Stony Brook University; Estados Unidos
Fil: Martín, Osvaldo Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina
Fil: Osthege, Michael. Helmholtz Gemeinschaft. Forschungszentrum Jülich; Alemania
Fil: Vieira, Ricardo. No especifíca;
Fil: Wiecki, Thomas. No especifíca;
Fil: Zinkov, Robert. University of Oxford; Reino Unido - Materia
-
Bayesian statistics
Probabilistic programming
Python
Markov chain Monte Carlo
Statistical modeling
BAYESIAN STATISTICS
PROBABILISTIC PROGRAMMING
PYTHON
MARKOV CHAIN MONTE CARLO,
STATISTICAL MODELING - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/232919
Ver los metadatos del registro completo
id |
CONICETDig_5463bc5b483cf37d7487fb38529611d4 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/232919 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
PyMC: a modern, and comprehensive probabilistic programming framework in PythonAbril Pla, OriolAndreani, VirgileCarroll, ColinDong, LarryFonnesbeck, Christopher J.Kochurov, MaximKumar, RavinLao, JunpengLuhmann, Christian C.Martín, Osvaldo AntonioOsthege, MichaelVieira, RicardoWiecki, ThomasZinkov, RobertBayesian statisticsProbabilistic programmingPythonMarkov chain Monte CarloStatistical modelingBAYESIAN STATISTICSPROBABILISTIC PROGRAMMINGPYTHONMARKOV CHAIN MONTE CARLO,STATISTICAL MODELINGhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1PyMC is a probabilistic programming library for Python that provides tools for constructing and fitting Bayesian models. It offers an intuitive, readable syntax that is close to the natural syntax statisticians use to describe models. PyMC leverages the symbolic computation library PyTensor, allowing it to be compiled into a variety of computational backends, such as C, JAX, and Numba, which in turn offer access to different computational architectures including CPU, GPU, and TPU. Being a general modeling framework, PyMC supports a variety of models including generalized hierarchical linear regression and classification, time series, ordinary differential equations (ODEs), and non-parametric models such as Gaussian processes (GPs). We demonstrate PyMC’s versatility and ease of use with examples spanning a range of common statistical models. Additionally, we discuss the positive role of PyMC in the development of the open-source ecosystem for probabilistic programming.Fil: Abril Pla, Oriol. No especifíca;Fil: Andreani, Virgile. Boston University; Estados UnidosFil: Carroll, Colin. Google Limited Liability Company (google Llc);Fil: Dong, Larry. University of Toronto; CanadáFil: Fonnesbeck, Christopher J.. No especifíca;Fil: Kochurov, Maxim. No especifíca;Fil: Kumar, Ravin. Google Limited Liability Company (google Llc);Fil: Lao, Junpeng. Google Limited Liability Company (google Llc);Fil: Luhmann, Christian C.. State University of New York. Stony Brook University; Estados UnidosFil: Martín, Osvaldo Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; ArgentinaFil: Osthege, Michael. Helmholtz Gemeinschaft. Forschungszentrum Jülich; AlemaniaFil: Vieira, Ricardo. No especifíca;Fil: Wiecki, Thomas. No especifíca;Fil: Zinkov, Robert. University of Oxford; Reino UnidoPeerJ Inc.2023-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/232919Abril Pla, Oriol; Andreani, Virgile; Carroll, Colin; Dong, Larry; Fonnesbeck, Christopher J.; et al.; PyMC: a modern, and comprehensive probabilistic programming framework in Python; PeerJ Inc.; PeerJ Computer Science; 9; 8-2023; 1-362376-5992CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.7717/peerj-cs.1516info:eu-repo/semantics/altIdentifier/url/https://peerj.com/articles/cs-1516/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:41:32Zoai:ri.conicet.gov.ar:11336/232919instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:41:33.542CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
PyMC: a modern, and comprehensive probabilistic programming framework in Python |
title |
PyMC: a modern, and comprehensive probabilistic programming framework in Python |
spellingShingle |
PyMC: a modern, and comprehensive probabilistic programming framework in Python Abril Pla, Oriol Bayesian statistics Probabilistic programming Python Markov chain Monte Carlo Statistical modeling BAYESIAN STATISTICS PROBABILISTIC PROGRAMMING PYTHON MARKOV CHAIN MONTE CARLO, STATISTICAL MODELING |
title_short |
PyMC: a modern, and comprehensive probabilistic programming framework in Python |
title_full |
PyMC: a modern, and comprehensive probabilistic programming framework in Python |
title_fullStr |
PyMC: a modern, and comprehensive probabilistic programming framework in Python |
title_full_unstemmed |
PyMC: a modern, and comprehensive probabilistic programming framework in Python |
title_sort |
PyMC: a modern, and comprehensive probabilistic programming framework in Python |
dc.creator.none.fl_str_mv |
Abril Pla, Oriol Andreani, Virgile Carroll, Colin Dong, Larry Fonnesbeck, Christopher J. Kochurov, Maxim Kumar, Ravin Lao, Junpeng Luhmann, Christian C. Martín, Osvaldo Antonio Osthege, Michael Vieira, Ricardo Wiecki, Thomas Zinkov, Robert |
author |
Abril Pla, Oriol |
author_facet |
Abril Pla, Oriol Andreani, Virgile Carroll, Colin Dong, Larry Fonnesbeck, Christopher J. Kochurov, Maxim Kumar, Ravin Lao, Junpeng Luhmann, Christian C. Martín, Osvaldo Antonio Osthege, Michael Vieira, Ricardo Wiecki, Thomas Zinkov, Robert |
author_role |
author |
author2 |
Andreani, Virgile Carroll, Colin Dong, Larry Fonnesbeck, Christopher J. Kochurov, Maxim Kumar, Ravin Lao, Junpeng Luhmann, Christian C. Martín, Osvaldo Antonio Osthege, Michael Vieira, Ricardo Wiecki, Thomas Zinkov, Robert |
author2_role |
author author author author author author author author author author author author author |
dc.subject.none.fl_str_mv |
Bayesian statistics Probabilistic programming Python Markov chain Monte Carlo Statistical modeling BAYESIAN STATISTICS PROBABILISTIC PROGRAMMING PYTHON MARKOV CHAIN MONTE CARLO, STATISTICAL MODELING |
topic |
Bayesian statistics Probabilistic programming Python Markov chain Monte Carlo Statistical modeling BAYESIAN STATISTICS PROBABILISTIC PROGRAMMING PYTHON MARKOV CHAIN MONTE CARLO, STATISTICAL MODELING |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
PyMC is a probabilistic programming library for Python that provides tools for constructing and fitting Bayesian models. It offers an intuitive, readable syntax that is close to the natural syntax statisticians use to describe models. PyMC leverages the symbolic computation library PyTensor, allowing it to be compiled into a variety of computational backends, such as C, JAX, and Numba, which in turn offer access to different computational architectures including CPU, GPU, and TPU. Being a general modeling framework, PyMC supports a variety of models including generalized hierarchical linear regression and classification, time series, ordinary differential equations (ODEs), and non-parametric models such as Gaussian processes (GPs). We demonstrate PyMC’s versatility and ease of use with examples spanning a range of common statistical models. Additionally, we discuss the positive role of PyMC in the development of the open-source ecosystem for probabilistic programming. Fil: Abril Pla, Oriol. No especifíca; Fil: Andreani, Virgile. Boston University; Estados Unidos Fil: Carroll, Colin. Google Limited Liability Company (google Llc); Fil: Dong, Larry. University of Toronto; Canadá Fil: Fonnesbeck, Christopher J.. No especifíca; Fil: Kochurov, Maxim. No especifíca; Fil: Kumar, Ravin. Google Limited Liability Company (google Llc); Fil: Lao, Junpeng. Google Limited Liability Company (google Llc); Fil: Luhmann, Christian C.. State University of New York. Stony Brook University; Estados Unidos Fil: Martín, Osvaldo Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina Fil: Osthege, Michael. Helmholtz Gemeinschaft. Forschungszentrum Jülich; Alemania Fil: Vieira, Ricardo. No especifíca; Fil: Wiecki, Thomas. No especifíca; Fil: Zinkov, Robert. University of Oxford; Reino Unido |
description |
PyMC is a probabilistic programming library for Python that provides tools for constructing and fitting Bayesian models. It offers an intuitive, readable syntax that is close to the natural syntax statisticians use to describe models. PyMC leverages the symbolic computation library PyTensor, allowing it to be compiled into a variety of computational backends, such as C, JAX, and Numba, which in turn offer access to different computational architectures including CPU, GPU, and TPU. Being a general modeling framework, PyMC supports a variety of models including generalized hierarchical linear regression and classification, time series, ordinary differential equations (ODEs), and non-parametric models such as Gaussian processes (GPs). We demonstrate PyMC’s versatility and ease of use with examples spanning a range of common statistical models. Additionally, we discuss the positive role of PyMC in the development of the open-source ecosystem for probabilistic programming. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/232919 Abril Pla, Oriol; Andreani, Virgile; Carroll, Colin; Dong, Larry; Fonnesbeck, Christopher J.; et al.; PyMC: a modern, and comprehensive probabilistic programming framework in Python; PeerJ Inc.; PeerJ Computer Science; 9; 8-2023; 1-36 2376-5992 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/232919 |
identifier_str_mv |
Abril Pla, Oriol; Andreani, Virgile; Carroll, Colin; Dong, Larry; Fonnesbeck, Christopher J.; et al.; PyMC: a modern, and comprehensive probabilistic programming framework in Python; PeerJ Inc.; PeerJ Computer Science; 9; 8-2023; 1-36 2376-5992 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.7717/peerj-cs.1516 info:eu-repo/semantics/altIdentifier/url/https://peerj.com/articles/cs-1516/ |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
PeerJ Inc. |
publisher.none.fl_str_mv |
PeerJ Inc. |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613312045645824 |
score |
13.070432 |