Polynomial order selection in random regression models via penalizing adaptively the likelihood
- Autores
- Corrales Alvarez, J. D.; Munilla, S.; Cantet, Rodolfo Juan Carlos
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Orthogonal Legendre polynomials (LP) are used to model the shape of additive genetic and permanent environmental effects in random regression models (RRM). Frequently, the Akaike (AIC) and the Bayesian (BIC) information criteria are employed to select LP order. However, it has been theoretically shown that neither AIC nor BIC is simultaneously optimal in terms of consistency and efficiency. Thus, the goal was to introduce a method, ‘penalizing adaptively the likelihood’ (PAL), as a criterion to select LP order in RRM. Four simulated data sets and real data (60 513 records, 6675 Colombian Holstein cows) were employed. Nested models were fitted to the data, and AIC, BIC and PAL were calculated for all of them. Results showed that PAL and BIC identified with probability of one the true LP order for the additive genetic and permanent environmental effects, but AIC tended to favour over parameterized models. Conversely, when the true model was unknown, PAL selected the best model with higher probability than AIC. In the latter case, BIC never favoured the best model. To summarize, PAL selected a correct model order regardless of whether the ‘true’ model was within the set of candidates.
Fil: Corrales Alvarez, J. D.. Universidad de Antioquia; Colombia. Universidad de Buenos Aires. Facultad de Agronomia. Departamento de Producción Animal; Argentina
Fil: Munilla, S.. Universidad de Buenos Aires. Facultad de Agronomia. Departamento de Producción Animal; Argentina
Fil: Cantet, Rodolfo Juan Carlos. Universidad de Buenos Aires. Facultad de Agronomia. Departamento de Producción Animal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Legendre Polynomial
Model Selection
Penalizing Adaptively the Likelihood
Random Regressions - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/16761
Ver los metadatos del registro completo
| id |
CONICETDig_70b0b9a8884f752615a769903d1e23ad |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/16761 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Polynomial order selection in random regression models via penalizing adaptively the likelihoodCorrales Alvarez, J. D.Munilla, S.Cantet, Rodolfo Juan CarlosLegendre PolynomialModel SelectionPenalizing Adaptively the LikelihoodRandom Regressionshttps://purl.org/becyt/ford/4.2https://purl.org/becyt/ford/4Orthogonal Legendre polynomials (LP) are used to model the shape of additive genetic and permanent environmental effects in random regression models (RRM). Frequently, the Akaike (AIC) and the Bayesian (BIC) information criteria are employed to select LP order. However, it has been theoretically shown that neither AIC nor BIC is simultaneously optimal in terms of consistency and efficiency. Thus, the goal was to introduce a method, ‘penalizing adaptively the likelihood’ (PAL), as a criterion to select LP order in RRM. Four simulated data sets and real data (60 513 records, 6675 Colombian Holstein cows) were employed. Nested models were fitted to the data, and AIC, BIC and PAL were calculated for all of them. Results showed that PAL and BIC identified with probability of one the true LP order for the additive genetic and permanent environmental effects, but AIC tended to favour over parameterized models. Conversely, when the true model was unknown, PAL selected the best model with higher probability than AIC. In the latter case, BIC never favoured the best model. To summarize, PAL selected a correct model order regardless of whether the ‘true’ model was within the set of candidates.Fil: Corrales Alvarez, J. D.. Universidad de Antioquia; Colombia. Universidad de Buenos Aires. Facultad de Agronomia. Departamento de Producción Animal; ArgentinaFil: Munilla, S.. Universidad de Buenos Aires. Facultad de Agronomia. Departamento de Producción Animal; ArgentinaFil: Cantet, Rodolfo Juan Carlos. Universidad de Buenos Aires. Facultad de Agronomia. Departamento de Producción Animal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaWiley2015-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/16761Corrales Alvarez, J. D.; Munilla, S.; Cantet, Rodolfo Juan Carlos; Polynomial order selection in random regression models via penalizing adaptively the likelihood; Wiley; Journal Of Animal Breeding And Genetics-zeitschrift Fur Tierzuchtung Und Zuchtungsbiologie; 132; 4; 8-2015; 281-2880931-2668enginfo:eu-repo/semantics/altIdentifier/doi/10.1111/jbg.12130info:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1111/jbg.12130/abstractinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-12-23T14:48:21Zoai:ri.conicet.gov.ar:11336/16761instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-12-23 14:48:21.441CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Polynomial order selection in random regression models via penalizing adaptively the likelihood |
| title |
Polynomial order selection in random regression models via penalizing adaptively the likelihood |
| spellingShingle |
Polynomial order selection in random regression models via penalizing adaptively the likelihood Corrales Alvarez, J. D. Legendre Polynomial Model Selection Penalizing Adaptively the Likelihood Random Regressions |
| title_short |
Polynomial order selection in random regression models via penalizing adaptively the likelihood |
| title_full |
Polynomial order selection in random regression models via penalizing adaptively the likelihood |
| title_fullStr |
Polynomial order selection in random regression models via penalizing adaptively the likelihood |
| title_full_unstemmed |
Polynomial order selection in random regression models via penalizing adaptively the likelihood |
| title_sort |
Polynomial order selection in random regression models via penalizing adaptively the likelihood |
| dc.creator.none.fl_str_mv |
Corrales Alvarez, J. D. Munilla, S. Cantet, Rodolfo Juan Carlos |
| author |
Corrales Alvarez, J. D. |
| author_facet |
Corrales Alvarez, J. D. Munilla, S. Cantet, Rodolfo Juan Carlos |
| author_role |
author |
| author2 |
Munilla, S. Cantet, Rodolfo Juan Carlos |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
Legendre Polynomial Model Selection Penalizing Adaptively the Likelihood Random Regressions |
| topic |
Legendre Polynomial Model Selection Penalizing Adaptively the Likelihood Random Regressions |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/4.2 https://purl.org/becyt/ford/4 |
| dc.description.none.fl_txt_mv |
Orthogonal Legendre polynomials (LP) are used to model the shape of additive genetic and permanent environmental effects in random regression models (RRM). Frequently, the Akaike (AIC) and the Bayesian (BIC) information criteria are employed to select LP order. However, it has been theoretically shown that neither AIC nor BIC is simultaneously optimal in terms of consistency and efficiency. Thus, the goal was to introduce a method, ‘penalizing adaptively the likelihood’ (PAL), as a criterion to select LP order in RRM. Four simulated data sets and real data (60 513 records, 6675 Colombian Holstein cows) were employed. Nested models were fitted to the data, and AIC, BIC and PAL were calculated for all of them. Results showed that PAL and BIC identified with probability of one the true LP order for the additive genetic and permanent environmental effects, but AIC tended to favour over parameterized models. Conversely, when the true model was unknown, PAL selected the best model with higher probability than AIC. In the latter case, BIC never favoured the best model. To summarize, PAL selected a correct model order regardless of whether the ‘true’ model was within the set of candidates. Fil: Corrales Alvarez, J. D.. Universidad de Antioquia; Colombia. Universidad de Buenos Aires. Facultad de Agronomia. Departamento de Producción Animal; Argentina Fil: Munilla, S.. Universidad de Buenos Aires. Facultad de Agronomia. Departamento de Producción Animal; Argentina Fil: Cantet, Rodolfo Juan Carlos. Universidad de Buenos Aires. Facultad de Agronomia. Departamento de Producción Animal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
| description |
Orthogonal Legendre polynomials (LP) are used to model the shape of additive genetic and permanent environmental effects in random regression models (RRM). Frequently, the Akaike (AIC) and the Bayesian (BIC) information criteria are employed to select LP order. However, it has been theoretically shown that neither AIC nor BIC is simultaneously optimal in terms of consistency and efficiency. Thus, the goal was to introduce a method, ‘penalizing adaptively the likelihood’ (PAL), as a criterion to select LP order in RRM. Four simulated data sets and real data (60 513 records, 6675 Colombian Holstein cows) were employed. Nested models were fitted to the data, and AIC, BIC and PAL were calculated for all of them. Results showed that PAL and BIC identified with probability of one the true LP order for the additive genetic and permanent environmental effects, but AIC tended to favour over parameterized models. Conversely, when the true model was unknown, PAL selected the best model with higher probability than AIC. In the latter case, BIC never favoured the best model. To summarize, PAL selected a correct model order regardless of whether the ‘true’ model was within the set of candidates. |
| publishDate |
2015 |
| dc.date.none.fl_str_mv |
2015-08 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/16761 Corrales Alvarez, J. D.; Munilla, S.; Cantet, Rodolfo Juan Carlos; Polynomial order selection in random regression models via penalizing adaptively the likelihood; Wiley; Journal Of Animal Breeding And Genetics-zeitschrift Fur Tierzuchtung Und Zuchtungsbiologie; 132; 4; 8-2015; 281-288 0931-2668 |
| url |
http://hdl.handle.net/11336/16761 |
| identifier_str_mv |
Corrales Alvarez, J. D.; Munilla, S.; Cantet, Rodolfo Juan Carlos; Polynomial order selection in random regression models via penalizing adaptively the likelihood; Wiley; Journal Of Animal Breeding And Genetics-zeitschrift Fur Tierzuchtung Und Zuchtungsbiologie; 132; 4; 8-2015; 281-288 0931-2668 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1111/jbg.12130 info:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1111/jbg.12130/abstract |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Wiley |
| publisher.none.fl_str_mv |
Wiley |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1852335831138697216 |
| score |
12.952241 |