Polynomial order selection in random regression models via penalizing adaptively the likelihood

Autores
Corrales Alvarez, J. D.; Munilla, S.; Cantet, Rodolfo Juan Carlos
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Orthogonal Legendre polynomials (LP) are used to model the shape of additive genetic and permanent environmental effects in random regression models (RRM). Frequently, the Akaike (AIC) and the Bayesian (BIC) information criteria are employed to select LP order. However, it has been theoretically shown that neither AIC nor BIC is simultaneously optimal in terms of consistency and efficiency. Thus, the goal was to introduce a method, ‘penalizing adaptively the likelihood’ (PAL), as a criterion to select LP order in RRM. Four simulated data sets and real data (60 513 records, 6675 Colombian Holstein cows) were employed. Nested models were fitted to the data, and AIC, BIC and PAL were calculated for all of them. Results showed that PAL and BIC identified with probability of one the true LP order for the additive genetic and permanent environmental effects, but AIC tended to favour over parameterized models. Conversely, when the true model was unknown, PAL selected the best model with higher probability than AIC. In the latter case, BIC never favoured the best model. To summarize, PAL selected a correct model order regardless of whether the ‘true’ model was within the set of candidates.
Fil: Corrales Alvarez, J. D.. Universidad de Antioquia; Colombia. Universidad de Buenos Aires. Facultad de Agronomia. Departamento de Producción Animal; Argentina
Fil: Munilla, S.. Universidad de Buenos Aires. Facultad de Agronomia. Departamento de Producción Animal; Argentina
Fil: Cantet, Rodolfo Juan Carlos. Universidad de Buenos Aires. Facultad de Agronomia. Departamento de Producción Animal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Legendre Polynomial
Model Selection
Penalizing Adaptively the Likelihood
Random Regressions
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/16761

id CONICETDig_70b0b9a8884f752615a769903d1e23ad
oai_identifier_str oai:ri.conicet.gov.ar:11336/16761
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Polynomial order selection in random regression models via penalizing adaptively the likelihoodCorrales Alvarez, J. D.Munilla, S.Cantet, Rodolfo Juan CarlosLegendre PolynomialModel SelectionPenalizing Adaptively the LikelihoodRandom Regressionshttps://purl.org/becyt/ford/4.2https://purl.org/becyt/ford/4Orthogonal Legendre polynomials (LP) are used to model the shape of additive genetic and permanent environmental effects in random regression models (RRM). Frequently, the Akaike (AIC) and the Bayesian (BIC) information criteria are employed to select LP order. However, it has been theoretically shown that neither AIC nor BIC is simultaneously optimal in terms of consistency and efficiency. Thus, the goal was to introduce a method, ‘penalizing adaptively the likelihood’ (PAL), as a criterion to select LP order in RRM. Four simulated data sets and real data (60 513 records, 6675 Colombian Holstein cows) were employed. Nested models were fitted to the data, and AIC, BIC and PAL were calculated for all of them. Results showed that PAL and BIC identified with probability of one the true LP order for the additive genetic and permanent environmental effects, but AIC tended to favour over parameterized models. Conversely, when the true model was unknown, PAL selected the best model with higher probability than AIC. In the latter case, BIC never favoured the best model. To summarize, PAL selected a correct model order regardless of whether the ‘true’ model was within the set of candidates.Fil: Corrales Alvarez, J. D.. Universidad de Antioquia; Colombia. Universidad de Buenos Aires. Facultad de Agronomia. Departamento de Producción Animal; ArgentinaFil: Munilla, S.. Universidad de Buenos Aires. Facultad de Agronomia. Departamento de Producción Animal; ArgentinaFil: Cantet, Rodolfo Juan Carlos. Universidad de Buenos Aires. Facultad de Agronomia. Departamento de Producción Animal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaWiley2015-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/16761Corrales Alvarez, J. D.; Munilla, S.; Cantet, Rodolfo Juan Carlos; Polynomial order selection in random regression models via penalizing adaptively the likelihood; Wiley; Journal Of Animal Breeding And Genetics-zeitschrift Fur Tierzuchtung Und Zuchtungsbiologie; 132; 4; 8-2015; 281-2880931-2668enginfo:eu-repo/semantics/altIdentifier/doi/10.1111/jbg.12130info:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1111/jbg.12130/abstractinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-12-23T14:48:21Zoai:ri.conicet.gov.ar:11336/16761instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-12-23 14:48:21.441CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Polynomial order selection in random regression models via penalizing adaptively the likelihood
title Polynomial order selection in random regression models via penalizing adaptively the likelihood
spellingShingle Polynomial order selection in random regression models via penalizing adaptively the likelihood
Corrales Alvarez, J. D.
Legendre Polynomial
Model Selection
Penalizing Adaptively the Likelihood
Random Regressions
title_short Polynomial order selection in random regression models via penalizing adaptively the likelihood
title_full Polynomial order selection in random regression models via penalizing adaptively the likelihood
title_fullStr Polynomial order selection in random regression models via penalizing adaptively the likelihood
title_full_unstemmed Polynomial order selection in random regression models via penalizing adaptively the likelihood
title_sort Polynomial order selection in random regression models via penalizing adaptively the likelihood
dc.creator.none.fl_str_mv Corrales Alvarez, J. D.
Munilla, S.
Cantet, Rodolfo Juan Carlos
author Corrales Alvarez, J. D.
author_facet Corrales Alvarez, J. D.
Munilla, S.
Cantet, Rodolfo Juan Carlos
author_role author
author2 Munilla, S.
Cantet, Rodolfo Juan Carlos
author2_role author
author
dc.subject.none.fl_str_mv Legendre Polynomial
Model Selection
Penalizing Adaptively the Likelihood
Random Regressions
topic Legendre Polynomial
Model Selection
Penalizing Adaptively the Likelihood
Random Regressions
purl_subject.fl_str_mv https://purl.org/becyt/ford/4.2
https://purl.org/becyt/ford/4
dc.description.none.fl_txt_mv Orthogonal Legendre polynomials (LP) are used to model the shape of additive genetic and permanent environmental effects in random regression models (RRM). Frequently, the Akaike (AIC) and the Bayesian (BIC) information criteria are employed to select LP order. However, it has been theoretically shown that neither AIC nor BIC is simultaneously optimal in terms of consistency and efficiency. Thus, the goal was to introduce a method, ‘penalizing adaptively the likelihood’ (PAL), as a criterion to select LP order in RRM. Four simulated data sets and real data (60 513 records, 6675 Colombian Holstein cows) were employed. Nested models were fitted to the data, and AIC, BIC and PAL were calculated for all of them. Results showed that PAL and BIC identified with probability of one the true LP order for the additive genetic and permanent environmental effects, but AIC tended to favour over parameterized models. Conversely, when the true model was unknown, PAL selected the best model with higher probability than AIC. In the latter case, BIC never favoured the best model. To summarize, PAL selected a correct model order regardless of whether the ‘true’ model was within the set of candidates.
Fil: Corrales Alvarez, J. D.. Universidad de Antioquia; Colombia. Universidad de Buenos Aires. Facultad de Agronomia. Departamento de Producción Animal; Argentina
Fil: Munilla, S.. Universidad de Buenos Aires. Facultad de Agronomia. Departamento de Producción Animal; Argentina
Fil: Cantet, Rodolfo Juan Carlos. Universidad de Buenos Aires. Facultad de Agronomia. Departamento de Producción Animal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description Orthogonal Legendre polynomials (LP) are used to model the shape of additive genetic and permanent environmental effects in random regression models (RRM). Frequently, the Akaike (AIC) and the Bayesian (BIC) information criteria are employed to select LP order. However, it has been theoretically shown that neither AIC nor BIC is simultaneously optimal in terms of consistency and efficiency. Thus, the goal was to introduce a method, ‘penalizing adaptively the likelihood’ (PAL), as a criterion to select LP order in RRM. Four simulated data sets and real data (60 513 records, 6675 Colombian Holstein cows) were employed. Nested models were fitted to the data, and AIC, BIC and PAL were calculated for all of them. Results showed that PAL and BIC identified with probability of one the true LP order for the additive genetic and permanent environmental effects, but AIC tended to favour over parameterized models. Conversely, when the true model was unknown, PAL selected the best model with higher probability than AIC. In the latter case, BIC never favoured the best model. To summarize, PAL selected a correct model order regardless of whether the ‘true’ model was within the set of candidates.
publishDate 2015
dc.date.none.fl_str_mv 2015-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/16761
Corrales Alvarez, J. D.; Munilla, S.; Cantet, Rodolfo Juan Carlos; Polynomial order selection in random regression models via penalizing adaptively the likelihood; Wiley; Journal Of Animal Breeding And Genetics-zeitschrift Fur Tierzuchtung Und Zuchtungsbiologie; 132; 4; 8-2015; 281-288
0931-2668
url http://hdl.handle.net/11336/16761
identifier_str_mv Corrales Alvarez, J. D.; Munilla, S.; Cantet, Rodolfo Juan Carlos; Polynomial order selection in random regression models via penalizing adaptively the likelihood; Wiley; Journal Of Animal Breeding And Genetics-zeitschrift Fur Tierzuchtung Und Zuchtungsbiologie; 132; 4; 8-2015; 281-288
0931-2668
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1111/jbg.12130
info:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1111/jbg.12130/abstract
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Wiley
publisher.none.fl_str_mv Wiley
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1852335831138697216
score 12.952241