A gradient-based strategy for the one-layer RTO+MPC controller
- Autores
- Alamo, Teodoro; Ferramosca, Antonio; González, Alejandro Hernán; Limón, Daniel; Odloak, Darci
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In the process industries model predictive controllers (MPC) have the task of controlling the plant ensuring stability and constraints satisfaction, while an economic cost is minimized. Usually the economicobjective is optimized by an upper level Real Time Optimizer (RTO) that passes the economically optimalsetpoints to the MPC level. The drawback of this structure is the possible inconsistence/unreachabilityof those setpoints, due to the different models employed by the RTO and the MPC, as well as their dif-ferent time scales. In this paper an MPC that explicitly integrates the RTO structure into the dynamiccontrol layer is presented. To overcome the complexity of this one-layer formulation a gradient-basedapproximation is proposed, which provides a low-computational-cost suboptimal solution.
Fil: Alamo, Teodoro. Universidad de Sevilla. Departamento de Ingenieria de Sistemas y Automatica; España
Fil: Ferramosca, Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química (i); Argentina
Fil: González, Alejandro Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina
Fil: Limón, Daniel. Universidad de Sevilla. Departamento de Ingenieria de Sistemas y Automatica; España
Fil: Odloak, Darci. Universidade de Sao Paulo; Brasil - Materia
-
Model Predictive Control
Real Time Optimization
Economic Objectives
Stability - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/9246
Ver los metadatos del registro completo
id |
CONICETDig_07619a32306bd5cf45620923fdd448b8 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/9246 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A gradient-based strategy for the one-layer RTO+MPC controllerAlamo, TeodoroFerramosca, AntonioGonzález, Alejandro HernánLimón, DanielOdloak, DarciModel Predictive ControlReal Time OptimizationEconomic ObjectivesStabilityhttps://purl.org/becyt/ford/2.11https://purl.org/becyt/ford/2In the process industries model predictive controllers (MPC) have the task of controlling the plant ensuring stability and constraints satisfaction, while an economic cost is minimized. Usually the economicobjective is optimized by an upper level Real Time Optimizer (RTO) that passes the economically optimalsetpoints to the MPC level. The drawback of this structure is the possible inconsistence/unreachabilityof those setpoints, due to the different models employed by the RTO and the MPC, as well as their dif-ferent time scales. In this paper an MPC that explicitly integrates the RTO structure into the dynamiccontrol layer is presented. To overcome the complexity of this one-layer formulation a gradient-basedapproximation is proposed, which provides a low-computational-cost suboptimal solution.Fil: Alamo, Teodoro. Universidad de Sevilla. Departamento de Ingenieria de Sistemas y Automatica; EspañaFil: Ferramosca, Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química (i); ArgentinaFil: González, Alejandro Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); ArgentinaFil: Limón, Daniel. Universidad de Sevilla. Departamento de Ingenieria de Sistemas y Automatica; EspañaFil: Odloak, Darci. Universidade de Sao Paulo; BrasilElsevier2014-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/9246Alamo, Teodoro; Ferramosca, Antonio; González, Alejandro Hernán; Limón, Daniel; Odloak, Darci; A gradient-based strategy for the one-layer RTO+MPC controller; Elsevier; Journal Of Process Control; 24; 4; 1-2014; 435-4470959-1524enginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jprocont.2014.02.018info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0959152414000717info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:13:18Zoai:ri.conicet.gov.ar:11336/9246instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:13:18.968CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A gradient-based strategy for the one-layer RTO+MPC controller |
title |
A gradient-based strategy for the one-layer RTO+MPC controller |
spellingShingle |
A gradient-based strategy for the one-layer RTO+MPC controller Alamo, Teodoro Model Predictive Control Real Time Optimization Economic Objectives Stability |
title_short |
A gradient-based strategy for the one-layer RTO+MPC controller |
title_full |
A gradient-based strategy for the one-layer RTO+MPC controller |
title_fullStr |
A gradient-based strategy for the one-layer RTO+MPC controller |
title_full_unstemmed |
A gradient-based strategy for the one-layer RTO+MPC controller |
title_sort |
A gradient-based strategy for the one-layer RTO+MPC controller |
dc.creator.none.fl_str_mv |
Alamo, Teodoro Ferramosca, Antonio González, Alejandro Hernán Limón, Daniel Odloak, Darci |
author |
Alamo, Teodoro |
author_facet |
Alamo, Teodoro Ferramosca, Antonio González, Alejandro Hernán Limón, Daniel Odloak, Darci |
author_role |
author |
author2 |
Ferramosca, Antonio González, Alejandro Hernán Limón, Daniel Odloak, Darci |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Model Predictive Control Real Time Optimization Economic Objectives Stability |
topic |
Model Predictive Control Real Time Optimization Economic Objectives Stability |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.11 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
In the process industries model predictive controllers (MPC) have the task of controlling the plant ensuring stability and constraints satisfaction, while an economic cost is minimized. Usually the economicobjective is optimized by an upper level Real Time Optimizer (RTO) that passes the economically optimalsetpoints to the MPC level. The drawback of this structure is the possible inconsistence/unreachabilityof those setpoints, due to the different models employed by the RTO and the MPC, as well as their dif-ferent time scales. In this paper an MPC that explicitly integrates the RTO structure into the dynamiccontrol layer is presented. To overcome the complexity of this one-layer formulation a gradient-basedapproximation is proposed, which provides a low-computational-cost suboptimal solution. Fil: Alamo, Teodoro. Universidad de Sevilla. Departamento de Ingenieria de Sistemas y Automatica; España Fil: Ferramosca, Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química (i); Argentina Fil: González, Alejandro Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina Fil: Limón, Daniel. Universidad de Sevilla. Departamento de Ingenieria de Sistemas y Automatica; España Fil: Odloak, Darci. Universidade de Sao Paulo; Brasil |
description |
In the process industries model predictive controllers (MPC) have the task of controlling the plant ensuring stability and constraints satisfaction, while an economic cost is minimized. Usually the economicobjective is optimized by an upper level Real Time Optimizer (RTO) that passes the economically optimalsetpoints to the MPC level. The drawback of this structure is the possible inconsistence/unreachabilityof those setpoints, due to the different models employed by the RTO and the MPC, as well as their dif-ferent time scales. In this paper an MPC that explicitly integrates the RTO structure into the dynamiccontrol layer is presented. To overcome the complexity of this one-layer formulation a gradient-basedapproximation is proposed, which provides a low-computational-cost suboptimal solution. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/9246 Alamo, Teodoro; Ferramosca, Antonio; González, Alejandro Hernán; Limón, Daniel; Odloak, Darci; A gradient-based strategy for the one-layer RTO+MPC controller; Elsevier; Journal Of Process Control; 24; 4; 1-2014; 435-447 0959-1524 |
url |
http://hdl.handle.net/11336/9246 |
identifier_str_mv |
Alamo, Teodoro; Ferramosca, Antonio; González, Alejandro Hernán; Limón, Daniel; Odloak, Darci; A gradient-based strategy for the one-layer RTO+MPC controller; Elsevier; Journal Of Process Control; 24; 4; 1-2014; 435-447 0959-1524 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jprocont.2014.02.018 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0959152414000717 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614048386121728 |
score |
13.070432 |