Collisions between two nonlinear deformable bodies stated within Continuum Mechanics

Autores
Buezas, Fernando Salvador; Rosales, Marta Beatriz; Filipich, Carlos Pedro
Año de publicación
2010
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The study of the interaction between two deformable bodies that collide is of great interest since desired effects, as a stable contact, or undesired ones, as the failure of a mechanical part, can be predicted. In this work, a Signorini type contact model with impact considering large rotations and deformations is addressed. The problem is stated using the Continuum Mechanics formulation in two and three dimensions with the Lagrangian description employing the two PiolaKirchhoff stress tensors with linear or non-linear constitutive equations. The governing equations are solved through a general purpose software oriented to solve partial differential equations by means of a finite element discretization. The impact of a deformable body over a rigid boundary or over other deformable body is tackled. Also a three-dimensional problem is addressed (i.e. a spheric ball impacting on a rigid surface). Numerical illustrations include parametric studies on the energy, the impulse forces and the time of contact for different initial conditions and materials. A comparison among the models is shown. Additionally the problem of the impact of two deformable solid balls is solved and contrasted with simpler models developed by other authors.
Fil: Buezas, Fernando Salvador. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Sur. Departamento de Física; Argentina
Fil: Rosales, Marta Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina
Fil: Filipich, Carlos Pedro. Universidad Tecnológica Nacional; Argentina
Materia
DEFORMABLE BODIES
IMPACT CONTACT TIME
LAGRANGIAN DESCRIPTION
UNILATERAL CONTACT
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/61791

id CONICETDig_9e6ecbba58eaf1673839a3ce201992ca
oai_identifier_str oai:ri.conicet.gov.ar:11336/61791
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Collisions between two nonlinear deformable bodies stated within Continuum MechanicsBuezas, Fernando SalvadorRosales, Marta BeatrizFilipich, Carlos PedroDEFORMABLE BODIESIMPACT CONTACT TIMELAGRANGIAN DESCRIPTIONUNILATERAL CONTACThttps://purl.org/becyt/ford/2.11https://purl.org/becyt/ford/2The study of the interaction between two deformable bodies that collide is of great interest since desired effects, as a stable contact, or undesired ones, as the failure of a mechanical part, can be predicted. In this work, a Signorini type contact model with impact considering large rotations and deformations is addressed. The problem is stated using the Continuum Mechanics formulation in two and three dimensions with the Lagrangian description employing the two PiolaKirchhoff stress tensors with linear or non-linear constitutive equations. The governing equations are solved through a general purpose software oriented to solve partial differential equations by means of a finite element discretization. The impact of a deformable body over a rigid boundary or over other deformable body is tackled. Also a three-dimensional problem is addressed (i.e. a spheric ball impacting on a rigid surface). Numerical illustrations include parametric studies on the energy, the impulse forces and the time of contact for different initial conditions and materials. A comparison among the models is shown. Additionally the problem of the impact of two deformable solid balls is solved and contrasted with simpler models developed by other authors.Fil: Buezas, Fernando Salvador. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Sur. Departamento de Física; ArgentinaFil: Rosales, Marta Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería; ArgentinaFil: Filipich, Carlos Pedro. Universidad Tecnológica Nacional; ArgentinaPergamon-Elsevier Science Ltd2010-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/61791Buezas, Fernando Salvador; Rosales, Marta Beatriz; Filipich, Carlos Pedro; Collisions between two nonlinear deformable bodies stated within Continuum Mechanics; Pergamon-Elsevier Science Ltd; International Journal of Mechanical Sciences; 52; 6; 6-2010; 777-7830020-7403CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0020740310000044info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ijmecsci.2010.01.003info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:02:05Zoai:ri.conicet.gov.ar:11336/61791instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:02:05.59CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Collisions between two nonlinear deformable bodies stated within Continuum Mechanics
title Collisions between two nonlinear deformable bodies stated within Continuum Mechanics
spellingShingle Collisions between two nonlinear deformable bodies stated within Continuum Mechanics
Buezas, Fernando Salvador
DEFORMABLE BODIES
IMPACT CONTACT TIME
LAGRANGIAN DESCRIPTION
UNILATERAL CONTACT
title_short Collisions between two nonlinear deformable bodies stated within Continuum Mechanics
title_full Collisions between two nonlinear deformable bodies stated within Continuum Mechanics
title_fullStr Collisions between two nonlinear deformable bodies stated within Continuum Mechanics
title_full_unstemmed Collisions between two nonlinear deformable bodies stated within Continuum Mechanics
title_sort Collisions between two nonlinear deformable bodies stated within Continuum Mechanics
dc.creator.none.fl_str_mv Buezas, Fernando Salvador
Rosales, Marta Beatriz
Filipich, Carlos Pedro
author Buezas, Fernando Salvador
author_facet Buezas, Fernando Salvador
Rosales, Marta Beatriz
Filipich, Carlos Pedro
author_role author
author2 Rosales, Marta Beatriz
Filipich, Carlos Pedro
author2_role author
author
dc.subject.none.fl_str_mv DEFORMABLE BODIES
IMPACT CONTACT TIME
LAGRANGIAN DESCRIPTION
UNILATERAL CONTACT
topic DEFORMABLE BODIES
IMPACT CONTACT TIME
LAGRANGIAN DESCRIPTION
UNILATERAL CONTACT
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.11
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv The study of the interaction between two deformable bodies that collide is of great interest since desired effects, as a stable contact, or undesired ones, as the failure of a mechanical part, can be predicted. In this work, a Signorini type contact model with impact considering large rotations and deformations is addressed. The problem is stated using the Continuum Mechanics formulation in two and three dimensions with the Lagrangian description employing the two PiolaKirchhoff stress tensors with linear or non-linear constitutive equations. The governing equations are solved through a general purpose software oriented to solve partial differential equations by means of a finite element discretization. The impact of a deformable body over a rigid boundary or over other deformable body is tackled. Also a three-dimensional problem is addressed (i.e. a spheric ball impacting on a rigid surface). Numerical illustrations include parametric studies on the energy, the impulse forces and the time of contact for different initial conditions and materials. A comparison among the models is shown. Additionally the problem of the impact of two deformable solid balls is solved and contrasted with simpler models developed by other authors.
Fil: Buezas, Fernando Salvador. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Sur. Departamento de Física; Argentina
Fil: Rosales, Marta Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina
Fil: Filipich, Carlos Pedro. Universidad Tecnológica Nacional; Argentina
description The study of the interaction between two deformable bodies that collide is of great interest since desired effects, as a stable contact, or undesired ones, as the failure of a mechanical part, can be predicted. In this work, a Signorini type contact model with impact considering large rotations and deformations is addressed. The problem is stated using the Continuum Mechanics formulation in two and three dimensions with the Lagrangian description employing the two PiolaKirchhoff stress tensors with linear or non-linear constitutive equations. The governing equations are solved through a general purpose software oriented to solve partial differential equations by means of a finite element discretization. The impact of a deformable body over a rigid boundary or over other deformable body is tackled. Also a three-dimensional problem is addressed (i.e. a spheric ball impacting on a rigid surface). Numerical illustrations include parametric studies on the energy, the impulse forces and the time of contact for different initial conditions and materials. A comparison among the models is shown. Additionally the problem of the impact of two deformable solid balls is solved and contrasted with simpler models developed by other authors.
publishDate 2010
dc.date.none.fl_str_mv 2010-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/61791
Buezas, Fernando Salvador; Rosales, Marta Beatriz; Filipich, Carlos Pedro; Collisions between two nonlinear deformable bodies stated within Continuum Mechanics; Pergamon-Elsevier Science Ltd; International Journal of Mechanical Sciences; 52; 6; 6-2010; 777-783
0020-7403
CONICET Digital
CONICET
url http://hdl.handle.net/11336/61791
identifier_str_mv Buezas, Fernando Salvador; Rosales, Marta Beatriz; Filipich, Carlos Pedro; Collisions between two nonlinear deformable bodies stated within Continuum Mechanics; Pergamon-Elsevier Science Ltd; International Journal of Mechanical Sciences; 52; 6; 6-2010; 777-783
0020-7403
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0020740310000044
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ijmecsci.2010.01.003
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613820858761216
score 13.070432