Solving Multimodal Paradoxes
- Autores
- Pailos, Federico Matias; Rosenblatt, Lucas Daniel
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Recently, it has been observed that the usual type-theoretic restrictions are not enough to block certain paradoxes involving two or more predicates. In particular, when we have a self-referential language containing modal predicates, new paradoxes might appear even if there are type restrictions for the principles governing those predicates. In this article we consider two type-theoretic solutions to multimodal paradoxes. The first one adds types for each of the modal predicates. We argue that there are a number of problems with most versions of this approach. The second one, which we favour, represents modal notions by using the truth predicate together with the corresponding modal operator. This way of doing things is not only useful because it avoids multimodal paradoxes, but also because it preserves the expressive capacity of the language. As an example of the sort of theory we have in mind, we provide a type-theoretic axiomatization that combines truth with necessity and knowledge.
Fil: Pailos, Federico Matias. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Rosenblatt, Lucas Daniel. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Multimodal Paradoxes
Semantic Paradoxes
Truth
Type-Theory - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/36260
Ver los metadatos del registro completo
id |
CONICETDig_6d4a136695153efe56849fd81dfdfe54 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/36260 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Solving Multimodal ParadoxesPailos, Federico MatiasRosenblatt, Lucas DanielMultimodal ParadoxesSemantic ParadoxesTruthType-Theoryhttps://purl.org/becyt/ford/6.3https://purl.org/becyt/ford/6Recently, it has been observed that the usual type-theoretic restrictions are not enough to block certain paradoxes involving two or more predicates. In particular, when we have a self-referential language containing modal predicates, new paradoxes might appear even if there are type restrictions for the principles governing those predicates. In this article we consider two type-theoretic solutions to multimodal paradoxes. The first one adds types for each of the modal predicates. We argue that there are a number of problems with most versions of this approach. The second one, which we favour, represents modal notions by using the truth predicate together with the corresponding modal operator. This way of doing things is not only useful because it avoids multimodal paradoxes, but also because it preserves the expressive capacity of the language. As an example of the sort of theory we have in mind, we provide a type-theoretic axiomatization that combines truth with necessity and knowledge.Fil: Pailos, Federico Matias. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Rosenblatt, Lucas Daniel. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaWiley2014-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/36260Pailos, Federico Matias; Rosenblatt, Lucas Daniel; Solving Multimodal Paradoxes; Wiley; Theoria; 81; 3; 4-2014; 192-2101755-2567CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1111/theo.12052info:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1111/theo.12052/abstractinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:14:19Zoai:ri.conicet.gov.ar:11336/36260instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:14:19.464CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Solving Multimodal Paradoxes |
title |
Solving Multimodal Paradoxes |
spellingShingle |
Solving Multimodal Paradoxes Pailos, Federico Matias Multimodal Paradoxes Semantic Paradoxes Truth Type-Theory |
title_short |
Solving Multimodal Paradoxes |
title_full |
Solving Multimodal Paradoxes |
title_fullStr |
Solving Multimodal Paradoxes |
title_full_unstemmed |
Solving Multimodal Paradoxes |
title_sort |
Solving Multimodal Paradoxes |
dc.creator.none.fl_str_mv |
Pailos, Federico Matias Rosenblatt, Lucas Daniel |
author |
Pailos, Federico Matias |
author_facet |
Pailos, Federico Matias Rosenblatt, Lucas Daniel |
author_role |
author |
author2 |
Rosenblatt, Lucas Daniel |
author2_role |
author |
dc.subject.none.fl_str_mv |
Multimodal Paradoxes Semantic Paradoxes Truth Type-Theory |
topic |
Multimodal Paradoxes Semantic Paradoxes Truth Type-Theory |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/6.3 https://purl.org/becyt/ford/6 |
dc.description.none.fl_txt_mv |
Recently, it has been observed that the usual type-theoretic restrictions are not enough to block certain paradoxes involving two or more predicates. In particular, when we have a self-referential language containing modal predicates, new paradoxes might appear even if there are type restrictions for the principles governing those predicates. In this article we consider two type-theoretic solutions to multimodal paradoxes. The first one adds types for each of the modal predicates. We argue that there are a number of problems with most versions of this approach. The second one, which we favour, represents modal notions by using the truth predicate together with the corresponding modal operator. This way of doing things is not only useful because it avoids multimodal paradoxes, but also because it preserves the expressive capacity of the language. As an example of the sort of theory we have in mind, we provide a type-theoretic axiomatization that combines truth with necessity and knowledge. Fil: Pailos, Federico Matias. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Rosenblatt, Lucas Daniel. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
Recently, it has been observed that the usual type-theoretic restrictions are not enough to block certain paradoxes involving two or more predicates. In particular, when we have a self-referential language containing modal predicates, new paradoxes might appear even if there are type restrictions for the principles governing those predicates. In this article we consider two type-theoretic solutions to multimodal paradoxes. The first one adds types for each of the modal predicates. We argue that there are a number of problems with most versions of this approach. The second one, which we favour, represents modal notions by using the truth predicate together with the corresponding modal operator. This way of doing things is not only useful because it avoids multimodal paradoxes, but also because it preserves the expressive capacity of the language. As an example of the sort of theory we have in mind, we provide a type-theoretic axiomatization that combines truth with necessity and knowledge. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/36260 Pailos, Federico Matias; Rosenblatt, Lucas Daniel; Solving Multimodal Paradoxes; Wiley; Theoria; 81; 3; 4-2014; 192-210 1755-2567 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/36260 |
identifier_str_mv |
Pailos, Federico Matias; Rosenblatt, Lucas Daniel; Solving Multimodal Paradoxes; Wiley; Theoria; 81; 3; 4-2014; 192-210 1755-2567 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1111/theo.12052 info:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1111/theo.12052/abstract |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Wiley |
publisher.none.fl_str_mv |
Wiley |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083290224656384 |
score |
12.891075 |