Critical Contingencies Ranking for Dynamic Security Assessment Using Neural Networks
- Autores
- Schweickardt, Gustavo Alejandro; Gimenez Alvarez, Juan Manuel
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A number of contingencies simulated during dynamic security assessment do not generate unacceptable values of power system state variables, due to their small influence on system operation. Their exclusion from the set of contingencies to be simulated in the security assessment would achieve a significant reduction in computation time. This paper defines a critical contingencies selection method for on-line dynamic security assessment. The selection method results from an off-line dynamical analysis, which covers typical scenarios and also covers various related aspects like frequency, voltage, and angle analyses among others. Indexes measured over these typical scenarios are used to train neural networks, capable of performing on-line estimation of a critical contingencies list according to the system state.
Fil: Schweickardt, Gustavo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Fundación Bariloche. Instituto de Economía Energetica; Argentina
Fil: Gimenez Alvarez, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería; Argentina - Materia
-
CRITICAL CONTINGENCIES
DYNAMIC SECURITY ASSESSMENT
NEURAL NETWORKS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/216609
Ver los metadatos del registro completo
id |
CONICETDig_6cb4a170a3563e6b36a7f0291ad887cc |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/216609 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Critical Contingencies Ranking for Dynamic Security Assessment Using Neural NetworksSchweickardt, Gustavo AlejandroGimenez Alvarez, Juan ManuelCRITICAL CONTINGENCIESDYNAMIC SECURITY ASSESSMENTNEURAL NETWORKShttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2https://purl.org/becyt/ford/5.2https://purl.org/becyt/ford/5A number of contingencies simulated during dynamic security assessment do not generate unacceptable values of power system state variables, due to their small influence on system operation. Their exclusion from the set of contingencies to be simulated in the security assessment would achieve a significant reduction in computation time. This paper defines a critical contingencies selection method for on-line dynamic security assessment. The selection method results from an off-line dynamical analysis, which covers typical scenarios and also covers various related aspects like frequency, voltage, and angle analyses among others. Indexes measured over these typical scenarios are used to train neural networks, capable of performing on-line estimation of a critical contingencies list according to the system state.Fil: Schweickardt, Gustavo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Fundación Bariloche. Instituto de Economía Energetica; ArgentinaFil: Gimenez Alvarez, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería; ArgentinaDavid Publishing Company2012-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/216609Schweickardt, Gustavo Alejandro; Gimenez Alvarez, Juan Manuel; Critical Contingencies Ranking for Dynamic Security Assessment Using Neural Networks; David Publishing Company; Journal of Energy and Power Engineering; 6; 10; 10-2012; 1663-16721934-8975CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.davidpublisher.com/index.php/Home/Article/index?id=19666.htmlinfo:eu-repo/semantics/altIdentifier/doi/10.17265/1934-8975/2012.10.016info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:50:52Zoai:ri.conicet.gov.ar:11336/216609instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:50:52.564CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Critical Contingencies Ranking for Dynamic Security Assessment Using Neural Networks |
title |
Critical Contingencies Ranking for Dynamic Security Assessment Using Neural Networks |
spellingShingle |
Critical Contingencies Ranking for Dynamic Security Assessment Using Neural Networks Schweickardt, Gustavo Alejandro CRITICAL CONTINGENCIES DYNAMIC SECURITY ASSESSMENT NEURAL NETWORKS |
title_short |
Critical Contingencies Ranking for Dynamic Security Assessment Using Neural Networks |
title_full |
Critical Contingencies Ranking for Dynamic Security Assessment Using Neural Networks |
title_fullStr |
Critical Contingencies Ranking for Dynamic Security Assessment Using Neural Networks |
title_full_unstemmed |
Critical Contingencies Ranking for Dynamic Security Assessment Using Neural Networks |
title_sort |
Critical Contingencies Ranking for Dynamic Security Assessment Using Neural Networks |
dc.creator.none.fl_str_mv |
Schweickardt, Gustavo Alejandro Gimenez Alvarez, Juan Manuel |
author |
Schweickardt, Gustavo Alejandro |
author_facet |
Schweickardt, Gustavo Alejandro Gimenez Alvarez, Juan Manuel |
author_role |
author |
author2 |
Gimenez Alvarez, Juan Manuel |
author2_role |
author |
dc.subject.none.fl_str_mv |
CRITICAL CONTINGENCIES DYNAMIC SECURITY ASSESSMENT NEURAL NETWORKS |
topic |
CRITICAL CONTINGENCIES DYNAMIC SECURITY ASSESSMENT NEURAL NETWORKS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 https://purl.org/becyt/ford/5.2 https://purl.org/becyt/ford/5 |
dc.description.none.fl_txt_mv |
A number of contingencies simulated during dynamic security assessment do not generate unacceptable values of power system state variables, due to their small influence on system operation. Their exclusion from the set of contingencies to be simulated in the security assessment would achieve a significant reduction in computation time. This paper defines a critical contingencies selection method for on-line dynamic security assessment. The selection method results from an off-line dynamical analysis, which covers typical scenarios and also covers various related aspects like frequency, voltage, and angle analyses among others. Indexes measured over these typical scenarios are used to train neural networks, capable of performing on-line estimation of a critical contingencies list according to the system state. Fil: Schweickardt, Gustavo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Fundación Bariloche. Instituto de Economía Energetica; Argentina Fil: Gimenez Alvarez, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería; Argentina |
description |
A number of contingencies simulated during dynamic security assessment do not generate unacceptable values of power system state variables, due to their small influence on system operation. Their exclusion from the set of contingencies to be simulated in the security assessment would achieve a significant reduction in computation time. This paper defines a critical contingencies selection method for on-line dynamic security assessment. The selection method results from an off-line dynamical analysis, which covers typical scenarios and also covers various related aspects like frequency, voltage, and angle analyses among others. Indexes measured over these typical scenarios are used to train neural networks, capable of performing on-line estimation of a critical contingencies list according to the system state. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/216609 Schweickardt, Gustavo Alejandro; Gimenez Alvarez, Juan Manuel; Critical Contingencies Ranking for Dynamic Security Assessment Using Neural Networks; David Publishing Company; Journal of Energy and Power Engineering; 6; 10; 10-2012; 1663-1672 1934-8975 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/216609 |
identifier_str_mv |
Schweickardt, Gustavo Alejandro; Gimenez Alvarez, Juan Manuel; Critical Contingencies Ranking for Dynamic Security Assessment Using Neural Networks; David Publishing Company; Journal of Energy and Power Engineering; 6; 10; 10-2012; 1663-1672 1934-8975 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.davidpublisher.com/index.php/Home/Article/index?id=19666.html info:eu-repo/semantics/altIdentifier/doi/10.17265/1934-8975/2012.10.016 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
David Publishing Company |
publisher.none.fl_str_mv |
David Publishing Company |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269058843541504 |
score |
13.13397 |