An Analysis of Convolutional Neural Networks for detecting DGA
- Autores
- Catania, Carlos; García, Sebastián; Torres, Pablo
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- A Domain Generation Algorithm (DGA) is an algorithm to generate domain names in a deterministic but seemly random way. Malware use DGAs to generate the next domain to access the Command Control (C&C) communication channel. Given the simplicity and velocity associated to the domain generation process, machine learning detection methods emerged as suitable detection solution. However, since the periodical retraining becomes mandatory, a fast and accurate detection method is needed. Convolutional neural network (CNN) are well known for performing real-time detection in fields like image and video recognition. Therefore, they seem suitable for DGA detection. The present work is a preliminary analysis of the detection performance of CNN for DGA detection. A CNN with a minimal architecture complexity was evaluated on a dataset with 51 DGA malware families as well as normal domains. Despite its simple architecture, the resulting CNN model correctly detected more than 97% of total DGA domains with a false positive rate close to 0.7%.
VII Workshop Seguridad Informática (WSI)
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
neural networks
network security
DGA detection - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/73629
Ver los metadatos del registro completo
id |
SEDICI_00f36e7525de25327997a31a59d4f0b7 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/73629 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
An Analysis of Convolutional Neural Networks for detecting DGACatania, CarlosGarcía, SebastiánTorres, PabloCiencias Informáticasneural networksnetwork securityDGA detectionA Domain Generation Algorithm (DGA) is an algorithm to generate domain names in a deterministic but seemly random way. Malware use DGAs to generate the next domain to access the Command Control (C&C) communication channel. Given the simplicity and velocity associated to the domain generation process, machine learning detection methods emerged as suitable detection solution. However, since the periodical retraining becomes mandatory, a fast and accurate detection method is needed. Convolutional neural network (CNN) are well known for performing real-time detection in fields like image and video recognition. Therefore, they seem suitable for DGA detection. The present work is a preliminary analysis of the detection performance of CNN for DGA detection. A CNN with a minimal architecture complexity was evaluated on a dataset with 51 DGA malware families as well as normal domains. Despite its simple architecture, the resulting CNN model correctly detected more than 97% of total DGA domains with a false positive rate close to 0.7%.VII Workshop Seguridad Informática (WSI)Red de Universidades con Carreras en Informática (RedUNCI)2018-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf1060-1069http://sedici.unlp.edu.ar/handle/10915/73629enginfo:eu-repo/semantics/altIdentifier/isbn/978-950-658-472-6info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:12:31Zoai:sedici.unlp.edu.ar:10915/73629Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:12:31.703SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
An Analysis of Convolutional Neural Networks for detecting DGA |
title |
An Analysis of Convolutional Neural Networks for detecting DGA |
spellingShingle |
An Analysis of Convolutional Neural Networks for detecting DGA Catania, Carlos Ciencias Informáticas neural networks network security DGA detection |
title_short |
An Analysis of Convolutional Neural Networks for detecting DGA |
title_full |
An Analysis of Convolutional Neural Networks for detecting DGA |
title_fullStr |
An Analysis of Convolutional Neural Networks for detecting DGA |
title_full_unstemmed |
An Analysis of Convolutional Neural Networks for detecting DGA |
title_sort |
An Analysis of Convolutional Neural Networks for detecting DGA |
dc.creator.none.fl_str_mv |
Catania, Carlos García, Sebastián Torres, Pablo |
author |
Catania, Carlos |
author_facet |
Catania, Carlos García, Sebastián Torres, Pablo |
author_role |
author |
author2 |
García, Sebastián Torres, Pablo |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas neural networks network security DGA detection |
topic |
Ciencias Informáticas neural networks network security DGA detection |
dc.description.none.fl_txt_mv |
A Domain Generation Algorithm (DGA) is an algorithm to generate domain names in a deterministic but seemly random way. Malware use DGAs to generate the next domain to access the Command Control (C&C) communication channel. Given the simplicity and velocity associated to the domain generation process, machine learning detection methods emerged as suitable detection solution. However, since the periodical retraining becomes mandatory, a fast and accurate detection method is needed. Convolutional neural network (CNN) are well known for performing real-time detection in fields like image and video recognition. Therefore, they seem suitable for DGA detection. The present work is a preliminary analysis of the detection performance of CNN for DGA detection. A CNN with a minimal architecture complexity was evaluated on a dataset with 51 DGA malware families as well as normal domains. Despite its simple architecture, the resulting CNN model correctly detected more than 97% of total DGA domains with a false positive rate close to 0.7%. VII Workshop Seguridad Informática (WSI) Red de Universidades con Carreras en Informática (RedUNCI) |
description |
A Domain Generation Algorithm (DGA) is an algorithm to generate domain names in a deterministic but seemly random way. Malware use DGAs to generate the next domain to access the Command Control (C&C) communication channel. Given the simplicity and velocity associated to the domain generation process, machine learning detection methods emerged as suitable detection solution. However, since the periodical retraining becomes mandatory, a fast and accurate detection method is needed. Convolutional neural network (CNN) are well known for performing real-time detection in fields like image and video recognition. Therefore, they seem suitable for DGA detection. The present work is a preliminary analysis of the detection performance of CNN for DGA detection. A CNN with a minimal architecture complexity was evaluated on a dataset with 51 DGA malware families as well as normal domains. Despite its simple architecture, the resulting CNN model correctly detected more than 97% of total DGA domains with a false positive rate close to 0.7%. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/73629 |
url |
http://sedici.unlp.edu.ar/handle/10915/73629 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/isbn/978-950-658-472-6 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 1060-1069 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844615995461730304 |
score |
13.070432 |