Tunneling splitting energy vs. tunneling rate constant: An empirical computational corroboration

Autores
Rodríguez Sotelo, Sindy Julieth; Kozuch, S.
Año de publicación
2025
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Quantum tunneling in degenerate double-well molecular systems has two mutually exclusive observables: the delocalized, coherent energy splitting (E01) and the localized, decoherent, non-stationary rearrangement rate constant (k). Although incompatible, both depend on similar factors, with sources suggesting linear or quadratic relationships. Our comparison between the experimental E01 values and small-curvature tunneling computed k values supports the quadratic model. The agreement between experimental and computational results also supports the applied tunneling protocol. We discuss how the quadratic formula applies to the decoherent regime, typical in “chemical” tunneling, while the linear model describes quantum probability fluctuations between wells under coherent tunneling.
Fil: Rodríguez Sotelo, Sindy Julieth. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Física del Litoral. Universidad Nacional del Litoral. Instituto de Física del Litoral; Argentina
Fil: Kozuch, S.. No especifíca;
Materia
TUNNELING
RATE CONSTANT
DOUBLE-WELL
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/275200

id CONICETDig_6c1a00a8e0dbc53c42e5783d4566d9d4
oai_identifier_str oai:ri.conicet.gov.ar:11336/275200
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Tunneling splitting energy vs. tunneling rate constant: An empirical computational corroborationRodríguez Sotelo, Sindy JuliethKozuch, S.TUNNELINGRATE CONSTANTDOUBLE-WELLhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Quantum tunneling in degenerate double-well molecular systems has two mutually exclusive observables: the delocalized, coherent energy splitting (E01) and the localized, decoherent, non-stationary rearrangement rate constant (k). Although incompatible, both depend on similar factors, with sources suggesting linear or quadratic relationships. Our comparison between the experimental E01 values and small-curvature tunneling computed k values supports the quadratic model. The agreement between experimental and computational results also supports the applied tunneling protocol. We discuss how the quadratic formula applies to the decoherent regime, typical in “chemical” tunneling, while the linear model describes quantum probability fluctuations between wells under coherent tunneling.Fil: Rodríguez Sotelo, Sindy Julieth. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Física del Litoral. Universidad Nacional del Litoral. Instituto de Física del Litoral; ArgentinaFil: Kozuch, S.. No especifíca;Elsevier Science2025-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/275200Rodríguez Sotelo, Sindy Julieth; Kozuch, S.; Tunneling splitting energy vs. tunneling rate constant: An empirical computational corroboration; Elsevier Science; Chemical Physics Letters; 864; 4-2025; 1-70009-2614CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0009261425000302info:eu-repo/semantics/altIdentifier/doi/10.1016/j.cplett.2025.141890info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-12-23T14:30:36Zoai:ri.conicet.gov.ar:11336/275200instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-12-23 14:30:37.209CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Tunneling splitting energy vs. tunneling rate constant: An empirical computational corroboration
title Tunneling splitting energy vs. tunneling rate constant: An empirical computational corroboration
spellingShingle Tunneling splitting energy vs. tunneling rate constant: An empirical computational corroboration
Rodríguez Sotelo, Sindy Julieth
TUNNELING
RATE CONSTANT
DOUBLE-WELL
title_short Tunneling splitting energy vs. tunneling rate constant: An empirical computational corroboration
title_full Tunneling splitting energy vs. tunneling rate constant: An empirical computational corroboration
title_fullStr Tunneling splitting energy vs. tunneling rate constant: An empirical computational corroboration
title_full_unstemmed Tunneling splitting energy vs. tunneling rate constant: An empirical computational corroboration
title_sort Tunneling splitting energy vs. tunneling rate constant: An empirical computational corroboration
dc.creator.none.fl_str_mv Rodríguez Sotelo, Sindy Julieth
Kozuch, S.
author Rodríguez Sotelo, Sindy Julieth
author_facet Rodríguez Sotelo, Sindy Julieth
Kozuch, S.
author_role author
author2 Kozuch, S.
author2_role author
dc.subject.none.fl_str_mv TUNNELING
RATE CONSTANT
DOUBLE-WELL
topic TUNNELING
RATE CONSTANT
DOUBLE-WELL
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Quantum tunneling in degenerate double-well molecular systems has two mutually exclusive observables: the delocalized, coherent energy splitting (E01) and the localized, decoherent, non-stationary rearrangement rate constant (k). Although incompatible, both depend on similar factors, with sources suggesting linear or quadratic relationships. Our comparison between the experimental E01 values and small-curvature tunneling computed k values supports the quadratic model. The agreement between experimental and computational results also supports the applied tunneling protocol. We discuss how the quadratic formula applies to the decoherent regime, typical in “chemical” tunneling, while the linear model describes quantum probability fluctuations between wells under coherent tunneling.
Fil: Rodríguez Sotelo, Sindy Julieth. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Física del Litoral. Universidad Nacional del Litoral. Instituto de Física del Litoral; Argentina
Fil: Kozuch, S.. No especifíca;
description Quantum tunneling in degenerate double-well molecular systems has two mutually exclusive observables: the delocalized, coherent energy splitting (E01) and the localized, decoherent, non-stationary rearrangement rate constant (k). Although incompatible, both depend on similar factors, with sources suggesting linear or quadratic relationships. Our comparison between the experimental E01 values and small-curvature tunneling computed k values supports the quadratic model. The agreement between experimental and computational results also supports the applied tunneling protocol. We discuss how the quadratic formula applies to the decoherent regime, typical in “chemical” tunneling, while the linear model describes quantum probability fluctuations between wells under coherent tunneling.
publishDate 2025
dc.date.none.fl_str_mv 2025-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/275200
Rodríguez Sotelo, Sindy Julieth; Kozuch, S.; Tunneling splitting energy vs. tunneling rate constant: An empirical computational corroboration; Elsevier Science; Chemical Physics Letters; 864; 4-2025; 1-7
0009-2614
CONICET Digital
CONICET
url http://hdl.handle.net/11336/275200
identifier_str_mv Rodríguez Sotelo, Sindy Julieth; Kozuch, S.; Tunneling splitting energy vs. tunneling rate constant: An empirical computational corroboration; Elsevier Science; Chemical Physics Letters; 864; 4-2025; 1-7
0009-2614
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0009261425000302
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.cplett.2025.141890
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1852335697185210368
score 12.952241