Multivariable Tracking Control of a Bioethanol Process under Uncertainties

Autores
Fernández Puchol, María Cecilia; Pantano, Maria Nadia; Serrano, Mario Emanuel; Scaglia, Gustavo Juan Eduardo
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Bioethanol is one of the most studied alternative fuels nowadays. Due to its production process complexity and the low quality of the mathematical models that describe it, a reliable controller is needed to maximize the fuel production and minimize its environmental impact, even in the presence of uncertainty. Here, a controller for tracking optimal profiles considering model errors and external perturbations is proposed. This work is an improvement of a previously presented technique. To reduce the earlier mentioned uncertainties' effect during the fermentation, some tracking error integrators are added in the control action calculation. This simple modification ensures the tracking error convergence to zero, even in the presence of uncertainties (demonstration available). Different tests are carried out and a performance comparison with the original controller is shown to highlight improvements in the tracking error of up to 98% when integrators are incorporated. Furthermore, a classical PI controller is contrasted with the proposed techniques.
Fil: Fernández Puchol, María Cecilia. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina
Fil: Pantano, Maria Nadia. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina
Fil: Serrano, Mario Emanuel. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina
Fil: Scaglia, Gustavo Juan Eduardo. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina
Materia
Tracking Control
Bioethanol
Process Control
Uncertainties
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/141718

id CONICETDig_6bbee66a22c56fbb47e38e021fcaf638
oai_identifier_str oai:ri.conicet.gov.ar:11336/141718
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Multivariable Tracking Control of a Bioethanol Process under UncertaintiesFernández Puchol, María CeciliaPantano, Maria NadiaSerrano, Mario EmanuelScaglia, Gustavo Juan EduardoTracking ControlBioethanolProcess ControlUncertaintieshttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2Bioethanol is one of the most studied alternative fuels nowadays. Due to its production process complexity and the low quality of the mathematical models that describe it, a reliable controller is needed to maximize the fuel production and minimize its environmental impact, even in the presence of uncertainty. Here, a controller for tracking optimal profiles considering model errors and external perturbations is proposed. This work is an improvement of a previously presented technique. To reduce the earlier mentioned uncertainties' effect during the fermentation, some tracking error integrators are added in the control action calculation. This simple modification ensures the tracking error convergence to zero, even in the presence of uncertainties (demonstration available). Different tests are carried out and a performance comparison with the original controller is shown to highlight improvements in the tracking error of up to 98% when integrators are incorporated. Furthermore, a classical PI controller is contrasted with the proposed techniques.Fil: Fernández Puchol, María Cecilia. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; ArgentinaFil: Pantano, Maria Nadia. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; ArgentinaFil: Serrano, Mario Emanuel. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; ArgentinaFil: Scaglia, Gustavo Juan Eduardo. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; ArgentinaHindawi Publishing Corporation2020-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/141718Fernández Puchol, María Cecilia; Pantano, Maria Nadia; Serrano, Mario Emanuel; Scaglia, Gustavo Juan Eduardo; Multivariable Tracking Control of a Bioethanol Process under Uncertainties; Hindawi Publishing Corporation; Mathematical Problems in Engineering; 2020; 1-2020; 1-171563-51471024-123XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.hindawi.com/journals/mpe/2020/8263690/info:eu-repo/semantics/altIdentifier/doi/10.1155/2020/8263690info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:18:00Zoai:ri.conicet.gov.ar:11336/141718instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:18:00.88CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Multivariable Tracking Control of a Bioethanol Process under Uncertainties
title Multivariable Tracking Control of a Bioethanol Process under Uncertainties
spellingShingle Multivariable Tracking Control of a Bioethanol Process under Uncertainties
Fernández Puchol, María Cecilia
Tracking Control
Bioethanol
Process Control
Uncertainties
title_short Multivariable Tracking Control of a Bioethanol Process under Uncertainties
title_full Multivariable Tracking Control of a Bioethanol Process under Uncertainties
title_fullStr Multivariable Tracking Control of a Bioethanol Process under Uncertainties
title_full_unstemmed Multivariable Tracking Control of a Bioethanol Process under Uncertainties
title_sort Multivariable Tracking Control of a Bioethanol Process under Uncertainties
dc.creator.none.fl_str_mv Fernández Puchol, María Cecilia
Pantano, Maria Nadia
Serrano, Mario Emanuel
Scaglia, Gustavo Juan Eduardo
author Fernández Puchol, María Cecilia
author_facet Fernández Puchol, María Cecilia
Pantano, Maria Nadia
Serrano, Mario Emanuel
Scaglia, Gustavo Juan Eduardo
author_role author
author2 Pantano, Maria Nadia
Serrano, Mario Emanuel
Scaglia, Gustavo Juan Eduardo
author2_role author
author
author
dc.subject.none.fl_str_mv Tracking Control
Bioethanol
Process Control
Uncertainties
topic Tracking Control
Bioethanol
Process Control
Uncertainties
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.4
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Bioethanol is one of the most studied alternative fuels nowadays. Due to its production process complexity and the low quality of the mathematical models that describe it, a reliable controller is needed to maximize the fuel production and minimize its environmental impact, even in the presence of uncertainty. Here, a controller for tracking optimal profiles considering model errors and external perturbations is proposed. This work is an improvement of a previously presented technique. To reduce the earlier mentioned uncertainties' effect during the fermentation, some tracking error integrators are added in the control action calculation. This simple modification ensures the tracking error convergence to zero, even in the presence of uncertainties (demonstration available). Different tests are carried out and a performance comparison with the original controller is shown to highlight improvements in the tracking error of up to 98% when integrators are incorporated. Furthermore, a classical PI controller is contrasted with the proposed techniques.
Fil: Fernández Puchol, María Cecilia. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina
Fil: Pantano, Maria Nadia. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina
Fil: Serrano, Mario Emanuel. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina
Fil: Scaglia, Gustavo Juan Eduardo. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina
description Bioethanol is one of the most studied alternative fuels nowadays. Due to its production process complexity and the low quality of the mathematical models that describe it, a reliable controller is needed to maximize the fuel production and minimize its environmental impact, even in the presence of uncertainty. Here, a controller for tracking optimal profiles considering model errors and external perturbations is proposed. This work is an improvement of a previously presented technique. To reduce the earlier mentioned uncertainties' effect during the fermentation, some tracking error integrators are added in the control action calculation. This simple modification ensures the tracking error convergence to zero, even in the presence of uncertainties (demonstration available). Different tests are carried out and a performance comparison with the original controller is shown to highlight improvements in the tracking error of up to 98% when integrators are incorporated. Furthermore, a classical PI controller is contrasted with the proposed techniques.
publishDate 2020
dc.date.none.fl_str_mv 2020-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/141718
Fernández Puchol, María Cecilia; Pantano, Maria Nadia; Serrano, Mario Emanuel; Scaglia, Gustavo Juan Eduardo; Multivariable Tracking Control of a Bioethanol Process under Uncertainties; Hindawi Publishing Corporation; Mathematical Problems in Engineering; 2020; 1-2020; 1-17
1563-5147
1024-123X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/141718
identifier_str_mv Fernández Puchol, María Cecilia; Pantano, Maria Nadia; Serrano, Mario Emanuel; Scaglia, Gustavo Juan Eduardo; Multivariable Tracking Control of a Bioethanol Process under Uncertainties; Hindawi Publishing Corporation; Mathematical Problems in Engineering; 2020; 1-2020; 1-17
1563-5147
1024-123X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.hindawi.com/journals/mpe/2020/8263690/
info:eu-repo/semantics/altIdentifier/doi/10.1155/2020/8263690
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Hindawi Publishing Corporation
publisher.none.fl_str_mv Hindawi Publishing Corporation
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842980985260474368
score 12.993085