A new approach for alkali incorporation in Cu2ZnSnS4 solar cells

Autores
Valdes, Matias Hernan; Hernandez, A.; Sánchez, Y.; Fonoll, R.; Placidi, M.; Izquierdo, V.; Cabas Vidani, A.; Valentini, M.; Mittiga, A.; Pistor, P.; Malerba, C.; Saucedo, E.
Año de publicación
2022
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The addition of alkali elements has become mandatory for boosting solar cell performance in chalcogenide thin films based on kesterites (Cu2ZnSnS4, CZTS). A novel doping process is presented here, that consists in the incorporation of sodium or lithium during the deposition of the CdS buffer layer, followed by a post-deposition annealing (PDA). As the doping route leads to more efficient devices in comparison with the undoped reference sample, the influence of PDA temperature was also investigated. Compositional profiling techniques, time-of-flight secondary ion mass spectrometry (TOF-SIMS) and glow discharge optical mission spectroscopy (GDOES), revealed a dependence of the alkaline distribution in kesterites with the PDA temperature. Although the doping process is effective in that it increases the alkaline concentration compared to the undoped sample, the compositional profiles indicate that a significant proportion of Li and Na remains ‘trapped’ within the CdS layer. In the 200 °C-300 °C range the alkali profiles registered the higher concentration inside the kesterite. Despite this, an additional alkali accumulation close to the molybdenum/fluorine doped tin oxide substrate was found for all the samples, which is frequently related to alkali segregation at interfaces. The addition of both, lithium and sodium, improves the photovoltaic response compared to the undoped reference device. This is mainly explained by a substantial improvement in the open-circuit potential (V oc) of the cells, with best devices achieving efficiencies of 4.5% and 3% for lithium and sodium, respectively. Scanning-electron microscopy images depicted a ‘bilayer structure’ with larger grains at the top and small grains at the bottom in all samples. Moreover, the calculated bandgap energies of the CZTS films account for changes in the crystallographic order-disorder of the kesterites, more related to the PDA treatment rather than alkali incorporation. Even if further optimization of the absorber synthesis and doping process will be required, this investigation allowed the evaluation of a novel strategy for alkali incorporation in kesterite based solar cells.
Fil: Valdes, Matias Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Hernandez, A.. Catalonia Institute For Energy Research Irec; España
Fil: Sánchez, Y.. Catalonia Institute For Energy Research Irec; España
Fil: Fonoll, R.. Catalonia Institute For Energy Research Irec; España
Fil: Placidi, M.. Universidad Politécnica de Catalunya; España. Catalonia Institute For Energy Research Irec; España
Fil: Izquierdo, V.. Catalonia Institute For Energy Research Irec; España
Fil: Cabas Vidani, A.. Swiss Federal Laboratories for Materials Science and Technology; Suiza
Fil: Valentini, M.. Enea Centro Ricerche Casaccia; Italia
Fil: Mittiga, A.. Enea Centro Ricerche Casaccia; Italia
Fil: Pistor, P.. Universidad Pablo de Olavide; España
Fil: Malerba, C.. Enea Centro Ricerche Casaccia; Italia
Fil: Saucedo, E.. Universidad Politécnica de Catalunya; España
Materia
ALKALI DOPING
CBD
CZTS
KESTERITE
PDA
THIN FILM PHOTOVOLTAICS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/212256

id CONICETDig_6a60ffa38bfdc82f9ffcdb70b3aeb65d
oai_identifier_str oai:ri.conicet.gov.ar:11336/212256
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A new approach for alkali incorporation in Cu2ZnSnS4 solar cellsValdes, Matias HernanHernandez, A.Sánchez, Y.Fonoll, R.Placidi, M.Izquierdo, V.Cabas Vidani, A.Valentini, M.Mittiga, A.Pistor, P.Malerba, C.Saucedo, E.ALKALI DOPINGCBDCZTSKESTERITEPDATHIN FILM PHOTOVOLTAICShttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2The addition of alkali elements has become mandatory for boosting solar cell performance in chalcogenide thin films based on kesterites (Cu2ZnSnS4, CZTS). A novel doping process is presented here, that consists in the incorporation of sodium or lithium during the deposition of the CdS buffer layer, followed by a post-deposition annealing (PDA). As the doping route leads to more efficient devices in comparison with the undoped reference sample, the influence of PDA temperature was also investigated. Compositional profiling techniques, time-of-flight secondary ion mass spectrometry (TOF-SIMS) and glow discharge optical mission spectroscopy (GDOES), revealed a dependence of the alkaline distribution in kesterites with the PDA temperature. Although the doping process is effective in that it increases the alkaline concentration compared to the undoped sample, the compositional profiles indicate that a significant proportion of Li and Na remains ‘trapped’ within the CdS layer. In the 200 °C-300 °C range the alkali profiles registered the higher concentration inside the kesterite. Despite this, an additional alkali accumulation close to the molybdenum/fluorine doped tin oxide substrate was found for all the samples, which is frequently related to alkali segregation at interfaces. The addition of both, lithium and sodium, improves the photovoltaic response compared to the undoped reference device. This is mainly explained by a substantial improvement in the open-circuit potential (V oc) of the cells, with best devices achieving efficiencies of 4.5% and 3% for lithium and sodium, respectively. Scanning-electron microscopy images depicted a ‘bilayer structure’ with larger grains at the top and small grains at the bottom in all samples. Moreover, the calculated bandgap energies of the CZTS films account for changes in the crystallographic order-disorder of the kesterites, more related to the PDA treatment rather than alkali incorporation. Even if further optimization of the absorber synthesis and doping process will be required, this investigation allowed the evaluation of a novel strategy for alkali incorporation in kesterite based solar cells.Fil: Valdes, Matias Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Hernandez, A.. Catalonia Institute For Energy Research Irec; EspañaFil: Sánchez, Y.. Catalonia Institute For Energy Research Irec; EspañaFil: Fonoll, R.. Catalonia Institute For Energy Research Irec; EspañaFil: Placidi, M.. Universidad Politécnica de Catalunya; España. Catalonia Institute For Energy Research Irec; EspañaFil: Izquierdo, V.. Catalonia Institute For Energy Research Irec; EspañaFil: Cabas Vidani, A.. Swiss Federal Laboratories for Materials Science and Technology; SuizaFil: Valentini, M.. Enea Centro Ricerche Casaccia; ItaliaFil: Mittiga, A.. Enea Centro Ricerche Casaccia; ItaliaFil: Pistor, P.. Universidad Pablo de Olavide; EspañaFil: Malerba, C.. Enea Centro Ricerche Casaccia; ItaliaFil: Saucedo, E.. Universidad Politécnica de Catalunya; EspañaIOP Publishing2022-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/212256Valdes, Matias Hernan; Hernandez, A.; Sánchez, Y.; Fonoll, R.; Placidi, M.; et al.; A new approach for alkali incorporation in Cu2ZnSnS4 solar cells; IOP Publishing; Journal of Physics: Energy; 4; 4; 10-2022; 44008-440082515-7655CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/2515-7655/ac96a4info:eu-repo/semantics/altIdentifier/doi/10.1088/2515-7655/ac96a4info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:11:10Zoai:ri.conicet.gov.ar:11336/212256instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:11:11.078CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A new approach for alkali incorporation in Cu2ZnSnS4 solar cells
title A new approach for alkali incorporation in Cu2ZnSnS4 solar cells
spellingShingle A new approach for alkali incorporation in Cu2ZnSnS4 solar cells
Valdes, Matias Hernan
ALKALI DOPING
CBD
CZTS
KESTERITE
PDA
THIN FILM PHOTOVOLTAICS
title_short A new approach for alkali incorporation in Cu2ZnSnS4 solar cells
title_full A new approach for alkali incorporation in Cu2ZnSnS4 solar cells
title_fullStr A new approach for alkali incorporation in Cu2ZnSnS4 solar cells
title_full_unstemmed A new approach for alkali incorporation in Cu2ZnSnS4 solar cells
title_sort A new approach for alkali incorporation in Cu2ZnSnS4 solar cells
dc.creator.none.fl_str_mv Valdes, Matias Hernan
Hernandez, A.
Sánchez, Y.
Fonoll, R.
Placidi, M.
Izquierdo, V.
Cabas Vidani, A.
Valentini, M.
Mittiga, A.
Pistor, P.
Malerba, C.
Saucedo, E.
author Valdes, Matias Hernan
author_facet Valdes, Matias Hernan
Hernandez, A.
Sánchez, Y.
Fonoll, R.
Placidi, M.
Izquierdo, V.
Cabas Vidani, A.
Valentini, M.
Mittiga, A.
Pistor, P.
Malerba, C.
Saucedo, E.
author_role author
author2 Hernandez, A.
Sánchez, Y.
Fonoll, R.
Placidi, M.
Izquierdo, V.
Cabas Vidani, A.
Valentini, M.
Mittiga, A.
Pistor, P.
Malerba, C.
Saucedo, E.
author2_role author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv ALKALI DOPING
CBD
CZTS
KESTERITE
PDA
THIN FILM PHOTOVOLTAICS
topic ALKALI DOPING
CBD
CZTS
KESTERITE
PDA
THIN FILM PHOTOVOLTAICS
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.5
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv The addition of alkali elements has become mandatory for boosting solar cell performance in chalcogenide thin films based on kesterites (Cu2ZnSnS4, CZTS). A novel doping process is presented here, that consists in the incorporation of sodium or lithium during the deposition of the CdS buffer layer, followed by a post-deposition annealing (PDA). As the doping route leads to more efficient devices in comparison with the undoped reference sample, the influence of PDA temperature was also investigated. Compositional profiling techniques, time-of-flight secondary ion mass spectrometry (TOF-SIMS) and glow discharge optical mission spectroscopy (GDOES), revealed a dependence of the alkaline distribution in kesterites with the PDA temperature. Although the doping process is effective in that it increases the alkaline concentration compared to the undoped sample, the compositional profiles indicate that a significant proportion of Li and Na remains ‘trapped’ within the CdS layer. In the 200 °C-300 °C range the alkali profiles registered the higher concentration inside the kesterite. Despite this, an additional alkali accumulation close to the molybdenum/fluorine doped tin oxide substrate was found for all the samples, which is frequently related to alkali segregation at interfaces. The addition of both, lithium and sodium, improves the photovoltaic response compared to the undoped reference device. This is mainly explained by a substantial improvement in the open-circuit potential (V oc) of the cells, with best devices achieving efficiencies of 4.5% and 3% for lithium and sodium, respectively. Scanning-electron microscopy images depicted a ‘bilayer structure’ with larger grains at the top and small grains at the bottom in all samples. Moreover, the calculated bandgap energies of the CZTS films account for changes in the crystallographic order-disorder of the kesterites, more related to the PDA treatment rather than alkali incorporation. Even if further optimization of the absorber synthesis and doping process will be required, this investigation allowed the evaluation of a novel strategy for alkali incorporation in kesterite based solar cells.
Fil: Valdes, Matias Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Hernandez, A.. Catalonia Institute For Energy Research Irec; España
Fil: Sánchez, Y.. Catalonia Institute For Energy Research Irec; España
Fil: Fonoll, R.. Catalonia Institute For Energy Research Irec; España
Fil: Placidi, M.. Universidad Politécnica de Catalunya; España. Catalonia Institute For Energy Research Irec; España
Fil: Izquierdo, V.. Catalonia Institute For Energy Research Irec; España
Fil: Cabas Vidani, A.. Swiss Federal Laboratories for Materials Science and Technology; Suiza
Fil: Valentini, M.. Enea Centro Ricerche Casaccia; Italia
Fil: Mittiga, A.. Enea Centro Ricerche Casaccia; Italia
Fil: Pistor, P.. Universidad Pablo de Olavide; España
Fil: Malerba, C.. Enea Centro Ricerche Casaccia; Italia
Fil: Saucedo, E.. Universidad Politécnica de Catalunya; España
description The addition of alkali elements has become mandatory for boosting solar cell performance in chalcogenide thin films based on kesterites (Cu2ZnSnS4, CZTS). A novel doping process is presented here, that consists in the incorporation of sodium or lithium during the deposition of the CdS buffer layer, followed by a post-deposition annealing (PDA). As the doping route leads to more efficient devices in comparison with the undoped reference sample, the influence of PDA temperature was also investigated. Compositional profiling techniques, time-of-flight secondary ion mass spectrometry (TOF-SIMS) and glow discharge optical mission spectroscopy (GDOES), revealed a dependence of the alkaline distribution in kesterites with the PDA temperature. Although the doping process is effective in that it increases the alkaline concentration compared to the undoped sample, the compositional profiles indicate that a significant proportion of Li and Na remains ‘trapped’ within the CdS layer. In the 200 °C-300 °C range the alkali profiles registered the higher concentration inside the kesterite. Despite this, an additional alkali accumulation close to the molybdenum/fluorine doped tin oxide substrate was found for all the samples, which is frequently related to alkali segregation at interfaces. The addition of both, lithium and sodium, improves the photovoltaic response compared to the undoped reference device. This is mainly explained by a substantial improvement in the open-circuit potential (V oc) of the cells, with best devices achieving efficiencies of 4.5% and 3% for lithium and sodium, respectively. Scanning-electron microscopy images depicted a ‘bilayer structure’ with larger grains at the top and small grains at the bottom in all samples. Moreover, the calculated bandgap energies of the CZTS films account for changes in the crystallographic order-disorder of the kesterites, more related to the PDA treatment rather than alkali incorporation. Even if further optimization of the absorber synthesis and doping process will be required, this investigation allowed the evaluation of a novel strategy for alkali incorporation in kesterite based solar cells.
publishDate 2022
dc.date.none.fl_str_mv 2022-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/212256
Valdes, Matias Hernan; Hernandez, A.; Sánchez, Y.; Fonoll, R.; Placidi, M.; et al.; A new approach for alkali incorporation in Cu2ZnSnS4 solar cells; IOP Publishing; Journal of Physics: Energy; 4; 4; 10-2022; 44008-44008
2515-7655
CONICET Digital
CONICET
url http://hdl.handle.net/11336/212256
identifier_str_mv Valdes, Matias Hernan; Hernandez, A.; Sánchez, Y.; Fonoll, R.; Placidi, M.; et al.; A new approach for alkali incorporation in Cu2ZnSnS4 solar cells; IOP Publishing; Journal of Physics: Energy; 4; 4; 10-2022; 44008-44008
2515-7655
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/2515-7655/ac96a4
info:eu-repo/semantics/altIdentifier/doi/10.1088/2515-7655/ac96a4
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv IOP Publishing
publisher.none.fl_str_mv IOP Publishing
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842270148899110912
score 13.13397