A new approach for alkali incorporation in Cu2ZnSnS4 solar cells
- Autores
- Valdes, Matias Hernan; Hernandez, A.; Sánchez, Y.; Fonoll, R.; Placidi, M.; Izquierdo, V.; Cabas Vidani, A.; Valentini, M.; Mittiga, A.; Pistor, P.; Malerba, C.; Saucedo, E.
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The addition of alkali elements has become mandatory for boosting solar cell performance in chalcogenide thin films based on kesterites (Cu2ZnSnS4, CZTS). A novel doping process is presented here, that consists in the incorporation of sodium or lithium during the deposition of the CdS buffer layer, followed by a post-deposition annealing (PDA). As the doping route leads to more efficient devices in comparison with the undoped reference sample, the influence of PDA temperature was also investigated. Compositional profiling techniques, time-of-flight secondary ion mass spectrometry (TOF-SIMS) and glow discharge optical mission spectroscopy (GDOES), revealed a dependence of the alkaline distribution in kesterites with the PDA temperature. Although the doping process is effective in that it increases the alkaline concentration compared to the undoped sample, the compositional profiles indicate that a significant proportion of Li and Na remains ‘trapped’ within the CdS layer. In the 200 °C-300 °C range the alkali profiles registered the higher concentration inside the kesterite. Despite this, an additional alkali accumulation close to the molybdenum/fluorine doped tin oxide substrate was found for all the samples, which is frequently related to alkali segregation at interfaces. The addition of both, lithium and sodium, improves the photovoltaic response compared to the undoped reference device. This is mainly explained by a substantial improvement in the open-circuit potential (V oc) of the cells, with best devices achieving efficiencies of 4.5% and 3% for lithium and sodium, respectively. Scanning-electron microscopy images depicted a ‘bilayer structure’ with larger grains at the top and small grains at the bottom in all samples. Moreover, the calculated bandgap energies of the CZTS films account for changes in the crystallographic order-disorder of the kesterites, more related to the PDA treatment rather than alkali incorporation. Even if further optimization of the absorber synthesis and doping process will be required, this investigation allowed the evaluation of a novel strategy for alkali incorporation in kesterite based solar cells.
Fil: Valdes, Matias Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Hernandez, A.. Catalonia Institute For Energy Research Irec; España
Fil: Sánchez, Y.. Catalonia Institute For Energy Research Irec; España
Fil: Fonoll, R.. Catalonia Institute For Energy Research Irec; España
Fil: Placidi, M.. Universidad Politécnica de Catalunya; España. Catalonia Institute For Energy Research Irec; España
Fil: Izquierdo, V.. Catalonia Institute For Energy Research Irec; España
Fil: Cabas Vidani, A.. Swiss Federal Laboratories for Materials Science and Technology; Suiza
Fil: Valentini, M.. Enea Centro Ricerche Casaccia; Italia
Fil: Mittiga, A.. Enea Centro Ricerche Casaccia; Italia
Fil: Pistor, P.. Universidad Pablo de Olavide; España
Fil: Malerba, C.. Enea Centro Ricerche Casaccia; Italia
Fil: Saucedo, E.. Universidad Politécnica de Catalunya; España - Materia
-
ALKALI DOPING
CBD
CZTS
KESTERITE
PDA
THIN FILM PHOTOVOLTAICS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/212256
Ver los metadatos del registro completo
id |
CONICETDig_6a60ffa38bfdc82f9ffcdb70b3aeb65d |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/212256 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A new approach for alkali incorporation in Cu2ZnSnS4 solar cellsValdes, Matias HernanHernandez, A.Sánchez, Y.Fonoll, R.Placidi, M.Izquierdo, V.Cabas Vidani, A.Valentini, M.Mittiga, A.Pistor, P.Malerba, C.Saucedo, E.ALKALI DOPINGCBDCZTSKESTERITEPDATHIN FILM PHOTOVOLTAICShttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2The addition of alkali elements has become mandatory for boosting solar cell performance in chalcogenide thin films based on kesterites (Cu2ZnSnS4, CZTS). A novel doping process is presented here, that consists in the incorporation of sodium or lithium during the deposition of the CdS buffer layer, followed by a post-deposition annealing (PDA). As the doping route leads to more efficient devices in comparison with the undoped reference sample, the influence of PDA temperature was also investigated. Compositional profiling techniques, time-of-flight secondary ion mass spectrometry (TOF-SIMS) and glow discharge optical mission spectroscopy (GDOES), revealed a dependence of the alkaline distribution in kesterites with the PDA temperature. Although the doping process is effective in that it increases the alkaline concentration compared to the undoped sample, the compositional profiles indicate that a significant proportion of Li and Na remains ‘trapped’ within the CdS layer. In the 200 °C-300 °C range the alkali profiles registered the higher concentration inside the kesterite. Despite this, an additional alkali accumulation close to the molybdenum/fluorine doped tin oxide substrate was found for all the samples, which is frequently related to alkali segregation at interfaces. The addition of both, lithium and sodium, improves the photovoltaic response compared to the undoped reference device. This is mainly explained by a substantial improvement in the open-circuit potential (V oc) of the cells, with best devices achieving efficiencies of 4.5% and 3% for lithium and sodium, respectively. Scanning-electron microscopy images depicted a ‘bilayer structure’ with larger grains at the top and small grains at the bottom in all samples. Moreover, the calculated bandgap energies of the CZTS films account for changes in the crystallographic order-disorder of the kesterites, more related to the PDA treatment rather than alkali incorporation. Even if further optimization of the absorber synthesis and doping process will be required, this investigation allowed the evaluation of a novel strategy for alkali incorporation in kesterite based solar cells.Fil: Valdes, Matias Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Hernandez, A.. Catalonia Institute For Energy Research Irec; EspañaFil: Sánchez, Y.. Catalonia Institute For Energy Research Irec; EspañaFil: Fonoll, R.. Catalonia Institute For Energy Research Irec; EspañaFil: Placidi, M.. Universidad Politécnica de Catalunya; España. Catalonia Institute For Energy Research Irec; EspañaFil: Izquierdo, V.. Catalonia Institute For Energy Research Irec; EspañaFil: Cabas Vidani, A.. Swiss Federal Laboratories for Materials Science and Technology; SuizaFil: Valentini, M.. Enea Centro Ricerche Casaccia; ItaliaFil: Mittiga, A.. Enea Centro Ricerche Casaccia; ItaliaFil: Pistor, P.. Universidad Pablo de Olavide; EspañaFil: Malerba, C.. Enea Centro Ricerche Casaccia; ItaliaFil: Saucedo, E.. Universidad Politécnica de Catalunya; EspañaIOP Publishing2022-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/212256Valdes, Matias Hernan; Hernandez, A.; Sánchez, Y.; Fonoll, R.; Placidi, M.; et al.; A new approach for alkali incorporation in Cu2ZnSnS4 solar cells; IOP Publishing; Journal of Physics: Energy; 4; 4; 10-2022; 44008-440082515-7655CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/2515-7655/ac96a4info:eu-repo/semantics/altIdentifier/doi/10.1088/2515-7655/ac96a4info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:11:10Zoai:ri.conicet.gov.ar:11336/212256instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:11:11.078CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A new approach for alkali incorporation in Cu2ZnSnS4 solar cells |
title |
A new approach for alkali incorporation in Cu2ZnSnS4 solar cells |
spellingShingle |
A new approach for alkali incorporation in Cu2ZnSnS4 solar cells Valdes, Matias Hernan ALKALI DOPING CBD CZTS KESTERITE PDA THIN FILM PHOTOVOLTAICS |
title_short |
A new approach for alkali incorporation in Cu2ZnSnS4 solar cells |
title_full |
A new approach for alkali incorporation in Cu2ZnSnS4 solar cells |
title_fullStr |
A new approach for alkali incorporation in Cu2ZnSnS4 solar cells |
title_full_unstemmed |
A new approach for alkali incorporation in Cu2ZnSnS4 solar cells |
title_sort |
A new approach for alkali incorporation in Cu2ZnSnS4 solar cells |
dc.creator.none.fl_str_mv |
Valdes, Matias Hernan Hernandez, A. Sánchez, Y. Fonoll, R. Placidi, M. Izquierdo, V. Cabas Vidani, A. Valentini, M. Mittiga, A. Pistor, P. Malerba, C. Saucedo, E. |
author |
Valdes, Matias Hernan |
author_facet |
Valdes, Matias Hernan Hernandez, A. Sánchez, Y. Fonoll, R. Placidi, M. Izquierdo, V. Cabas Vidani, A. Valentini, M. Mittiga, A. Pistor, P. Malerba, C. Saucedo, E. |
author_role |
author |
author2 |
Hernandez, A. Sánchez, Y. Fonoll, R. Placidi, M. Izquierdo, V. Cabas Vidani, A. Valentini, M. Mittiga, A. Pistor, P. Malerba, C. Saucedo, E. |
author2_role |
author author author author author author author author author author author |
dc.subject.none.fl_str_mv |
ALKALI DOPING CBD CZTS KESTERITE PDA THIN FILM PHOTOVOLTAICS |
topic |
ALKALI DOPING CBD CZTS KESTERITE PDA THIN FILM PHOTOVOLTAICS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.5 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
The addition of alkali elements has become mandatory for boosting solar cell performance in chalcogenide thin films based on kesterites (Cu2ZnSnS4, CZTS). A novel doping process is presented here, that consists in the incorporation of sodium or lithium during the deposition of the CdS buffer layer, followed by a post-deposition annealing (PDA). As the doping route leads to more efficient devices in comparison with the undoped reference sample, the influence of PDA temperature was also investigated. Compositional profiling techniques, time-of-flight secondary ion mass spectrometry (TOF-SIMS) and glow discharge optical mission spectroscopy (GDOES), revealed a dependence of the alkaline distribution in kesterites with the PDA temperature. Although the doping process is effective in that it increases the alkaline concentration compared to the undoped sample, the compositional profiles indicate that a significant proportion of Li and Na remains ‘trapped’ within the CdS layer. In the 200 °C-300 °C range the alkali profiles registered the higher concentration inside the kesterite. Despite this, an additional alkali accumulation close to the molybdenum/fluorine doped tin oxide substrate was found for all the samples, which is frequently related to alkali segregation at interfaces. The addition of both, lithium and sodium, improves the photovoltaic response compared to the undoped reference device. This is mainly explained by a substantial improvement in the open-circuit potential (V oc) of the cells, with best devices achieving efficiencies of 4.5% and 3% for lithium and sodium, respectively. Scanning-electron microscopy images depicted a ‘bilayer structure’ with larger grains at the top and small grains at the bottom in all samples. Moreover, the calculated bandgap energies of the CZTS films account for changes in the crystallographic order-disorder of the kesterites, more related to the PDA treatment rather than alkali incorporation. Even if further optimization of the absorber synthesis and doping process will be required, this investigation allowed the evaluation of a novel strategy for alkali incorporation in kesterite based solar cells. Fil: Valdes, Matias Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina Fil: Hernandez, A.. Catalonia Institute For Energy Research Irec; España Fil: Sánchez, Y.. Catalonia Institute For Energy Research Irec; España Fil: Fonoll, R.. Catalonia Institute For Energy Research Irec; España Fil: Placidi, M.. Universidad Politécnica de Catalunya; España. Catalonia Institute For Energy Research Irec; España Fil: Izquierdo, V.. Catalonia Institute For Energy Research Irec; España Fil: Cabas Vidani, A.. Swiss Federal Laboratories for Materials Science and Technology; Suiza Fil: Valentini, M.. Enea Centro Ricerche Casaccia; Italia Fil: Mittiga, A.. Enea Centro Ricerche Casaccia; Italia Fil: Pistor, P.. Universidad Pablo de Olavide; España Fil: Malerba, C.. Enea Centro Ricerche Casaccia; Italia Fil: Saucedo, E.. Universidad Politécnica de Catalunya; España |
description |
The addition of alkali elements has become mandatory for boosting solar cell performance in chalcogenide thin films based on kesterites (Cu2ZnSnS4, CZTS). A novel doping process is presented here, that consists in the incorporation of sodium or lithium during the deposition of the CdS buffer layer, followed by a post-deposition annealing (PDA). As the doping route leads to more efficient devices in comparison with the undoped reference sample, the influence of PDA temperature was also investigated. Compositional profiling techniques, time-of-flight secondary ion mass spectrometry (TOF-SIMS) and glow discharge optical mission spectroscopy (GDOES), revealed a dependence of the alkaline distribution in kesterites with the PDA temperature. Although the doping process is effective in that it increases the alkaline concentration compared to the undoped sample, the compositional profiles indicate that a significant proportion of Li and Na remains ‘trapped’ within the CdS layer. In the 200 °C-300 °C range the alkali profiles registered the higher concentration inside the kesterite. Despite this, an additional alkali accumulation close to the molybdenum/fluorine doped tin oxide substrate was found for all the samples, which is frequently related to alkali segregation at interfaces. The addition of both, lithium and sodium, improves the photovoltaic response compared to the undoped reference device. This is mainly explained by a substantial improvement in the open-circuit potential (V oc) of the cells, with best devices achieving efficiencies of 4.5% and 3% for lithium and sodium, respectively. Scanning-electron microscopy images depicted a ‘bilayer structure’ with larger grains at the top and small grains at the bottom in all samples. Moreover, the calculated bandgap energies of the CZTS films account for changes in the crystallographic order-disorder of the kesterites, more related to the PDA treatment rather than alkali incorporation. Even if further optimization of the absorber synthesis and doping process will be required, this investigation allowed the evaluation of a novel strategy for alkali incorporation in kesterite based solar cells. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/212256 Valdes, Matias Hernan; Hernandez, A.; Sánchez, Y.; Fonoll, R.; Placidi, M.; et al.; A new approach for alkali incorporation in Cu2ZnSnS4 solar cells; IOP Publishing; Journal of Physics: Energy; 4; 4; 10-2022; 44008-44008 2515-7655 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/212256 |
identifier_str_mv |
Valdes, Matias Hernan; Hernandez, A.; Sánchez, Y.; Fonoll, R.; Placidi, M.; et al.; A new approach for alkali incorporation in Cu2ZnSnS4 solar cells; IOP Publishing; Journal of Physics: Energy; 4; 4; 10-2022; 44008-44008 2515-7655 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/2515-7655/ac96a4 info:eu-repo/semantics/altIdentifier/doi/10.1088/2515-7655/ac96a4 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
IOP Publishing |
publisher.none.fl_str_mv |
IOP Publishing |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842270148899110912 |
score |
13.13397 |