A Hölder infinity Laplacian obtained as limit of Orlicz fractional Laplacians
- Autores
- Fernandez Bonder, Julian; Pérez Llanos, Mayte; Salort, Ariel Martin
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This paper concerns the study of the asymptotic behavior of the solutions to a family of fractional type problems on a bounded domain, satisfying homogeneous Dirichlet boundary conditions. The family of differential operators includes the fractional pn-Laplacian when pn→ ∞ as a particular case, tough it could be extended to a function of the Hölder quotient of order s, whose primitive is an Orlicz function satisfying appropriated growth conditions. The limit equation involves the Hölder infinity Laplacian.
Fil: Fernandez Bonder, Julian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Pérez Llanos, Mayte. Universidad de Sevilla; España
Fil: Salort, Ariel Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina - Materia
-
FRACTIONAL G-LAPLACE OPERATOR
FRACTIONAL ORDER SOBOLEV SPACES
ORLICZ–SOBOLEV SPACES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/171216
Ver los metadatos del registro completo
id |
CONICETDig_6a4c781738c637d3f16a12e7f937848a |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/171216 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A Hölder infinity Laplacian obtained as limit of Orlicz fractional LaplaciansFernandez Bonder, JulianPérez Llanos, MayteSalort, Ariel MartinFRACTIONAL G-LAPLACE OPERATORFRACTIONAL ORDER SOBOLEV SPACESORLICZ–SOBOLEV SPACEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1This paper concerns the study of the asymptotic behavior of the solutions to a family of fractional type problems on a bounded domain, satisfying homogeneous Dirichlet boundary conditions. The family of differential operators includes the fractional pn-Laplacian when pn→ ∞ as a particular case, tough it could be extended to a function of the Hölder quotient of order s, whose primitive is an Orlicz function satisfying appropriated growth conditions. The limit equation involves the Hölder infinity Laplacian.Fil: Fernandez Bonder, Julian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Pérez Llanos, Mayte. Universidad de Sevilla; EspañaFil: Salort, Ariel Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaSpringer2022-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/171216Fernandez Bonder, Julian; Pérez Llanos, Mayte; Salort, Ariel Martin; A Hölder infinity Laplacian obtained as limit of Orlicz fractional Laplacians; Springer; Revista Matematica Complutense; 35; 2; 5-2022; 447-4831139-11381988-2807CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s13163-021-00390-2info:eu-repo/semantics/altIdentifier/doi/10.1007/s13163-021-00390-2info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1807.01669info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:57:57Zoai:ri.conicet.gov.ar:11336/171216instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:57:58.111CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A Hölder infinity Laplacian obtained as limit of Orlicz fractional Laplacians |
title |
A Hölder infinity Laplacian obtained as limit of Orlicz fractional Laplacians |
spellingShingle |
A Hölder infinity Laplacian obtained as limit of Orlicz fractional Laplacians Fernandez Bonder, Julian FRACTIONAL G-LAPLACE OPERATOR FRACTIONAL ORDER SOBOLEV SPACES ORLICZ–SOBOLEV SPACES |
title_short |
A Hölder infinity Laplacian obtained as limit of Orlicz fractional Laplacians |
title_full |
A Hölder infinity Laplacian obtained as limit of Orlicz fractional Laplacians |
title_fullStr |
A Hölder infinity Laplacian obtained as limit of Orlicz fractional Laplacians |
title_full_unstemmed |
A Hölder infinity Laplacian obtained as limit of Orlicz fractional Laplacians |
title_sort |
A Hölder infinity Laplacian obtained as limit of Orlicz fractional Laplacians |
dc.creator.none.fl_str_mv |
Fernandez Bonder, Julian Pérez Llanos, Mayte Salort, Ariel Martin |
author |
Fernandez Bonder, Julian |
author_facet |
Fernandez Bonder, Julian Pérez Llanos, Mayte Salort, Ariel Martin |
author_role |
author |
author2 |
Pérez Llanos, Mayte Salort, Ariel Martin |
author2_role |
author author |
dc.subject.none.fl_str_mv |
FRACTIONAL G-LAPLACE OPERATOR FRACTIONAL ORDER SOBOLEV SPACES ORLICZ–SOBOLEV SPACES |
topic |
FRACTIONAL G-LAPLACE OPERATOR FRACTIONAL ORDER SOBOLEV SPACES ORLICZ–SOBOLEV SPACES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
This paper concerns the study of the asymptotic behavior of the solutions to a family of fractional type problems on a bounded domain, satisfying homogeneous Dirichlet boundary conditions. The family of differential operators includes the fractional pn-Laplacian when pn→ ∞ as a particular case, tough it could be extended to a function of the Hölder quotient of order s, whose primitive is an Orlicz function satisfying appropriated growth conditions. The limit equation involves the Hölder infinity Laplacian. Fil: Fernandez Bonder, Julian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Pérez Llanos, Mayte. Universidad de Sevilla; España Fil: Salort, Ariel Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina |
description |
This paper concerns the study of the asymptotic behavior of the solutions to a family of fractional type problems on a bounded domain, satisfying homogeneous Dirichlet boundary conditions. The family of differential operators includes the fractional pn-Laplacian when pn→ ∞ as a particular case, tough it could be extended to a function of the Hölder quotient of order s, whose primitive is an Orlicz function satisfying appropriated growth conditions. The limit equation involves the Hölder infinity Laplacian. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/171216 Fernandez Bonder, Julian; Pérez Llanos, Mayte; Salort, Ariel Martin; A Hölder infinity Laplacian obtained as limit of Orlicz fractional Laplacians; Springer; Revista Matematica Complutense; 35; 2; 5-2022; 447-483 1139-1138 1988-2807 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/171216 |
identifier_str_mv |
Fernandez Bonder, Julian; Pérez Llanos, Mayte; Salort, Ariel Martin; A Hölder infinity Laplacian obtained as limit of Orlicz fractional Laplacians; Springer; Revista Matematica Complutense; 35; 2; 5-2022; 447-483 1139-1138 1988-2807 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s13163-021-00390-2 info:eu-repo/semantics/altIdentifier/doi/10.1007/s13163-021-00390-2 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1807.01669 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269492058521600 |
score |
13.13397 |