A Hölder infinity Laplacian obtained as limit of Orlicz fractional Laplacians

Autores
Fernandez Bonder, Julian; Pérez Llanos, Mayte; Salort, Ariel Martin
Año de publicación
2022
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
This paper concerns the study of the asymptotic behavior of the solutions to a family of fractional type problems on a bounded domain, satisfying homogeneous Dirichlet boundary conditions. The family of differential operators includes the fractional pn-Laplacian when pn→ ∞ as a particular case, tough it could be extended to a function of the Hölder quotient of order s, whose primitive is an Orlicz function satisfying appropriated growth conditions. The limit equation involves the Hölder infinity Laplacian.
Fil: Fernandez Bonder, Julian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Pérez Llanos, Mayte. Universidad de Sevilla; España
Fil: Salort, Ariel Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Materia
FRACTIONAL G-LAPLACE OPERATOR
FRACTIONAL ORDER SOBOLEV SPACES
ORLICZ–SOBOLEV SPACES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/171216

id CONICETDig_6a4c781738c637d3f16a12e7f937848a
oai_identifier_str oai:ri.conicet.gov.ar:11336/171216
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A Hölder infinity Laplacian obtained as limit of Orlicz fractional LaplaciansFernandez Bonder, JulianPérez Llanos, MayteSalort, Ariel MartinFRACTIONAL G-LAPLACE OPERATORFRACTIONAL ORDER SOBOLEV SPACESORLICZ–SOBOLEV SPACEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1This paper concerns the study of the asymptotic behavior of the solutions to a family of fractional type problems on a bounded domain, satisfying homogeneous Dirichlet boundary conditions. The family of differential operators includes the fractional pn-Laplacian when pn→ ∞ as a particular case, tough it could be extended to a function of the Hölder quotient of order s, whose primitive is an Orlicz function satisfying appropriated growth conditions. The limit equation involves the Hölder infinity Laplacian.Fil: Fernandez Bonder, Julian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Pérez Llanos, Mayte. Universidad de Sevilla; EspañaFil: Salort, Ariel Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaSpringer2022-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/171216Fernandez Bonder, Julian; Pérez Llanos, Mayte; Salort, Ariel Martin; A Hölder infinity Laplacian obtained as limit of Orlicz fractional Laplacians; Springer; Revista Matematica Complutense; 35; 2; 5-2022; 447-4831139-11381988-2807CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s13163-021-00390-2info:eu-repo/semantics/altIdentifier/doi/10.1007/s13163-021-00390-2info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1807.01669info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:57:57Zoai:ri.conicet.gov.ar:11336/171216instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:57:58.111CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A Hölder infinity Laplacian obtained as limit of Orlicz fractional Laplacians
title A Hölder infinity Laplacian obtained as limit of Orlicz fractional Laplacians
spellingShingle A Hölder infinity Laplacian obtained as limit of Orlicz fractional Laplacians
Fernandez Bonder, Julian
FRACTIONAL G-LAPLACE OPERATOR
FRACTIONAL ORDER SOBOLEV SPACES
ORLICZ–SOBOLEV SPACES
title_short A Hölder infinity Laplacian obtained as limit of Orlicz fractional Laplacians
title_full A Hölder infinity Laplacian obtained as limit of Orlicz fractional Laplacians
title_fullStr A Hölder infinity Laplacian obtained as limit of Orlicz fractional Laplacians
title_full_unstemmed A Hölder infinity Laplacian obtained as limit of Orlicz fractional Laplacians
title_sort A Hölder infinity Laplacian obtained as limit of Orlicz fractional Laplacians
dc.creator.none.fl_str_mv Fernandez Bonder, Julian
Pérez Llanos, Mayte
Salort, Ariel Martin
author Fernandez Bonder, Julian
author_facet Fernandez Bonder, Julian
Pérez Llanos, Mayte
Salort, Ariel Martin
author_role author
author2 Pérez Llanos, Mayte
Salort, Ariel Martin
author2_role author
author
dc.subject.none.fl_str_mv FRACTIONAL G-LAPLACE OPERATOR
FRACTIONAL ORDER SOBOLEV SPACES
ORLICZ–SOBOLEV SPACES
topic FRACTIONAL G-LAPLACE OPERATOR
FRACTIONAL ORDER SOBOLEV SPACES
ORLICZ–SOBOLEV SPACES
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv This paper concerns the study of the asymptotic behavior of the solutions to a family of fractional type problems on a bounded domain, satisfying homogeneous Dirichlet boundary conditions. The family of differential operators includes the fractional pn-Laplacian when pn→ ∞ as a particular case, tough it could be extended to a function of the Hölder quotient of order s, whose primitive is an Orlicz function satisfying appropriated growth conditions. The limit equation involves the Hölder infinity Laplacian.
Fil: Fernandez Bonder, Julian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Pérez Llanos, Mayte. Universidad de Sevilla; España
Fil: Salort, Ariel Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
description This paper concerns the study of the asymptotic behavior of the solutions to a family of fractional type problems on a bounded domain, satisfying homogeneous Dirichlet boundary conditions. The family of differential operators includes the fractional pn-Laplacian when pn→ ∞ as a particular case, tough it could be extended to a function of the Hölder quotient of order s, whose primitive is an Orlicz function satisfying appropriated growth conditions. The limit equation involves the Hölder infinity Laplacian.
publishDate 2022
dc.date.none.fl_str_mv 2022-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/171216
Fernandez Bonder, Julian; Pérez Llanos, Mayte; Salort, Ariel Martin; A Hölder infinity Laplacian obtained as limit of Orlicz fractional Laplacians; Springer; Revista Matematica Complutense; 35; 2; 5-2022; 447-483
1139-1138
1988-2807
CONICET Digital
CONICET
url http://hdl.handle.net/11336/171216
identifier_str_mv Fernandez Bonder, Julian; Pérez Llanos, Mayte; Salort, Ariel Martin; A Hölder infinity Laplacian obtained as limit of Orlicz fractional Laplacians; Springer; Revista Matematica Complutense; 35; 2; 5-2022; 447-483
1139-1138
1988-2807
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s13163-021-00390-2
info:eu-repo/semantics/altIdentifier/doi/10.1007/s13163-021-00390-2
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1807.01669
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269492058521600
score 13.13397