On microstructure evolution in fiber-reinforced elastomers and implications for their mechanical response and stability

Autores
Lopez Pamies, Oscar; Idiart, Martín Ignacio; Li, Zhiyun
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Lopez-Pamies and Idiart (2010, "Fiber-Reinforced Hyperelastic Solids: A Realizable Homogenization Constitutive Theory," J. Eng. Math., 68(1), pp. 57-83) have recently put forward a homogenization theory with the capability to generate exact results not only for the macroscopic response and stability but also for the evolution of the microstructure in fiber-reinforced hyperelastic solids subjected to finite deformations. In this paper, we make use of this new theory to construct exact, closed-form solutions for the change in size, shape, and orientation undergone by the underlying fibers in a model class of fiber-reinforced hyperelastic solids along arbitrary 3D loading conditions. Making use of these results, we then establish connections between the evolution of the microstructure and the overall stress-strain relation and macroscopic stability in fiber-reinforced elastomers. In particular, we show that the rotation of the fibers may lead to the softening of the overall stiffness of fiber-reinforced elastomers under certain loading conditions. Furthermore, we show that this geometric mechanism is intimately related to the development of long-wavelength instabilities. These findings are discussed in light of comparisons with recent results for related material systems.
Fil: Lopez Pamies, Oscar. State University of New York; Estados Unidos
Fil: Idiart, Martín Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Aeronáutica; Argentina
Fil: Li, Zhiyun. State University of New York; Estados Unidos
Materia
FINITE STRAIN
HAMILTON-JACOBI EQUATION
HOMOGENIZATION
INSTABILITIES
MICROSTRUCTURES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/198221

id CONICETDig_6a4bcd2e869e8d29bc3037f14ee904c2
oai_identifier_str oai:ri.conicet.gov.ar:11336/198221
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling On microstructure evolution in fiber-reinforced elastomers and implications for their mechanical response and stabilityLopez Pamies, OscarIdiart, Martín IgnacioLi, ZhiyunFINITE STRAINHAMILTON-JACOBI EQUATIONHOMOGENIZATIONINSTABILITIESMICROSTRUCTUREShttps://purl.org/becyt/ford/2.3https://purl.org/becyt/ford/2Lopez-Pamies and Idiart (2010, "Fiber-Reinforced Hyperelastic Solids: A Realizable Homogenization Constitutive Theory," J. Eng. Math., 68(1), pp. 57-83) have recently put forward a homogenization theory with the capability to generate exact results not only for the macroscopic response and stability but also for the evolution of the microstructure in fiber-reinforced hyperelastic solids subjected to finite deformations. In this paper, we make use of this new theory to construct exact, closed-form solutions for the change in size, shape, and orientation undergone by the underlying fibers in a model class of fiber-reinforced hyperelastic solids along arbitrary 3D loading conditions. Making use of these results, we then establish connections between the evolution of the microstructure and the overall stress-strain relation and macroscopic stability in fiber-reinforced elastomers. In particular, we show that the rotation of the fibers may lead to the softening of the overall stiffness of fiber-reinforced elastomers under certain loading conditions. Furthermore, we show that this geometric mechanism is intimately related to the development of long-wavelength instabilities. These findings are discussed in light of comparisons with recent results for related material systems.Fil: Lopez Pamies, Oscar. State University of New York; Estados UnidosFil: Idiart, Martín Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Aeronáutica; ArgentinaFil: Li, Zhiyun. State University of New York; Estados UnidosAmerican Society of Mechanical Engineers2011-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/198221Lopez Pamies, Oscar; Idiart, Martín Ignacio; Li, Zhiyun; On microstructure evolution in fiber-reinforced elastomers and implications for their mechanical response and stability; American Society of Mechanical Engineers; Journal of Engineering Materials and Technology- Transactions of the ASME; 133; 1; 1-2011; 1-100094-4289CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://asmedigitalcollection.asme.org/materialstechnology/article-abstract/133/1/011007/465410/On-Microstructure-Evolution-in-Fiber-Reinforcedinfo:eu-repo/semantics/altIdentifier/doi/10.1115/1.4002642info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:19:15Zoai:ri.conicet.gov.ar:11336/198221instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:19:15.663CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv On microstructure evolution in fiber-reinforced elastomers and implications for their mechanical response and stability
title On microstructure evolution in fiber-reinforced elastomers and implications for their mechanical response and stability
spellingShingle On microstructure evolution in fiber-reinforced elastomers and implications for their mechanical response and stability
Lopez Pamies, Oscar
FINITE STRAIN
HAMILTON-JACOBI EQUATION
HOMOGENIZATION
INSTABILITIES
MICROSTRUCTURES
title_short On microstructure evolution in fiber-reinforced elastomers and implications for their mechanical response and stability
title_full On microstructure evolution in fiber-reinforced elastomers and implications for their mechanical response and stability
title_fullStr On microstructure evolution in fiber-reinforced elastomers and implications for their mechanical response and stability
title_full_unstemmed On microstructure evolution in fiber-reinforced elastomers and implications for their mechanical response and stability
title_sort On microstructure evolution in fiber-reinforced elastomers and implications for their mechanical response and stability
dc.creator.none.fl_str_mv Lopez Pamies, Oscar
Idiart, Martín Ignacio
Li, Zhiyun
author Lopez Pamies, Oscar
author_facet Lopez Pamies, Oscar
Idiart, Martín Ignacio
Li, Zhiyun
author_role author
author2 Idiart, Martín Ignacio
Li, Zhiyun
author2_role author
author
dc.subject.none.fl_str_mv FINITE STRAIN
HAMILTON-JACOBI EQUATION
HOMOGENIZATION
INSTABILITIES
MICROSTRUCTURES
topic FINITE STRAIN
HAMILTON-JACOBI EQUATION
HOMOGENIZATION
INSTABILITIES
MICROSTRUCTURES
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.3
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Lopez-Pamies and Idiart (2010, "Fiber-Reinforced Hyperelastic Solids: A Realizable Homogenization Constitutive Theory," J. Eng. Math., 68(1), pp. 57-83) have recently put forward a homogenization theory with the capability to generate exact results not only for the macroscopic response and stability but also for the evolution of the microstructure in fiber-reinforced hyperelastic solids subjected to finite deformations. In this paper, we make use of this new theory to construct exact, closed-form solutions for the change in size, shape, and orientation undergone by the underlying fibers in a model class of fiber-reinforced hyperelastic solids along arbitrary 3D loading conditions. Making use of these results, we then establish connections between the evolution of the microstructure and the overall stress-strain relation and macroscopic stability in fiber-reinforced elastomers. In particular, we show that the rotation of the fibers may lead to the softening of the overall stiffness of fiber-reinforced elastomers under certain loading conditions. Furthermore, we show that this geometric mechanism is intimately related to the development of long-wavelength instabilities. These findings are discussed in light of comparisons with recent results for related material systems.
Fil: Lopez Pamies, Oscar. State University of New York; Estados Unidos
Fil: Idiart, Martín Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Aeronáutica; Argentina
Fil: Li, Zhiyun. State University of New York; Estados Unidos
description Lopez-Pamies and Idiart (2010, "Fiber-Reinforced Hyperelastic Solids: A Realizable Homogenization Constitutive Theory," J. Eng. Math., 68(1), pp. 57-83) have recently put forward a homogenization theory with the capability to generate exact results not only for the macroscopic response and stability but also for the evolution of the microstructure in fiber-reinforced hyperelastic solids subjected to finite deformations. In this paper, we make use of this new theory to construct exact, closed-form solutions for the change in size, shape, and orientation undergone by the underlying fibers in a model class of fiber-reinforced hyperelastic solids along arbitrary 3D loading conditions. Making use of these results, we then establish connections between the evolution of the microstructure and the overall stress-strain relation and macroscopic stability in fiber-reinforced elastomers. In particular, we show that the rotation of the fibers may lead to the softening of the overall stiffness of fiber-reinforced elastomers under certain loading conditions. Furthermore, we show that this geometric mechanism is intimately related to the development of long-wavelength instabilities. These findings are discussed in light of comparisons with recent results for related material systems.
publishDate 2011
dc.date.none.fl_str_mv 2011-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/198221
Lopez Pamies, Oscar; Idiart, Martín Ignacio; Li, Zhiyun; On microstructure evolution in fiber-reinforced elastomers and implications for their mechanical response and stability; American Society of Mechanical Engineers; Journal of Engineering Materials and Technology- Transactions of the ASME; 133; 1; 1-2011; 1-10
0094-4289
CONICET Digital
CONICET
url http://hdl.handle.net/11336/198221
identifier_str_mv Lopez Pamies, Oscar; Idiart, Martín Ignacio; Li, Zhiyun; On microstructure evolution in fiber-reinforced elastomers and implications for their mechanical response and stability; American Society of Mechanical Engineers; Journal of Engineering Materials and Technology- Transactions of the ASME; 133; 1; 1-2011; 1-10
0094-4289
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://asmedigitalcollection.asme.org/materialstechnology/article-abstract/133/1/011007/465410/On-Microstructure-Evolution-in-Fiber-Reinforced
info:eu-repo/semantics/altIdentifier/doi/10.1115/1.4002642
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Society of Mechanical Engineers
publisher.none.fl_str_mv American Society of Mechanical Engineers
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614162259378176
score 13.070432