Cavitation in elastomeric solids: II—Onset-of-cavitation surfaces for Neo-Hookean materials

Autores
Lopez Pamies, Oscar; Nakamura, Toshio; Idiart, Martín Ignacio
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In Part I of this work we derived a fairly general theory of cavitation in elastomeric solids based on the sudden growth of pre-existing defects. In this article, the theory is used to determine onset-of-cavitation surfaces for Neo-Hookean solids where the defects are isotropically distributed and vacuous. These surfaces correspond to the set of all critical Cauchy stress states at which cavitation ensues; general three-dimensional loadings are considered. Their computation requires the numerical solution of a nonlinear first-order partial differential equation in two variables. The theoretical results indicate that cavitation occurs only for stress states where the three principal Cauchy stresses are tensile, and that the required hydrostatic tensile component increases with increasing shear components. These results are confronted to finite-element simulations for the growth of a small spherical cavity in a Neo-Hookean block under multi-axial loading. Good agreement is found for a wide range of loading conditions. Comparisons with earlier results available in the literature are also provided and discussed. We conclude this work by devising a closed-form approximation to the theoretical surface, which is of remarkable accuracy and mathematical simplicity.
Fil: Lopez Pamies, Oscar. State University of New York; Estados Unidos
Fil: Nakamura, Toshio. State University of New York; Estados Unidos
Fil: Idiart, Martín Ignacio. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Aeronáutica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
FINITE STRAIN
MICROSTRUCTURES
INSTABILITIES
BIFURCATION
FAILURE SURFACES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/95096

id CONICETDig_5f92262b90a6e560f3cae36c99e88a76
oai_identifier_str oai:ri.conicet.gov.ar:11336/95096
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Cavitation in elastomeric solids: II—Onset-of-cavitation surfaces for Neo-Hookean materialsLopez Pamies, OscarNakamura, ToshioIdiart, Martín IgnacioFINITE STRAINMICROSTRUCTURESINSTABILITIESBIFURCATIONFAILURE SURFACEShttps://purl.org/becyt/ford/2.3https://purl.org/becyt/ford/2In Part I of this work we derived a fairly general theory of cavitation in elastomeric solids based on the sudden growth of pre-existing defects. In this article, the theory is used to determine onset-of-cavitation surfaces for Neo-Hookean solids where the defects are isotropically distributed and vacuous. These surfaces correspond to the set of all critical Cauchy stress states at which cavitation ensues; general three-dimensional loadings are considered. Their computation requires the numerical solution of a nonlinear first-order partial differential equation in two variables. The theoretical results indicate that cavitation occurs only for stress states where the three principal Cauchy stresses are tensile, and that the required hydrostatic tensile component increases with increasing shear components. These results are confronted to finite-element simulations for the growth of a small spherical cavity in a Neo-Hookean block under multi-axial loading. Good agreement is found for a wide range of loading conditions. Comparisons with earlier results available in the literature are also provided and discussed. We conclude this work by devising a closed-form approximation to the theoretical surface, which is of remarkable accuracy and mathematical simplicity.Fil: Lopez Pamies, Oscar. State University of New York; Estados UnidosFil: Nakamura, Toshio. State University of New York; Estados UnidosFil: Idiart, Martín Ignacio. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Aeronáutica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaPergamon-Elsevier Science Ltd2011-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/95096Lopez Pamies, Oscar; Nakamura, Toshio; Idiart, Martín Ignacio; Cavitation in elastomeric solids: II—Onset-of-cavitation surfaces for Neo-Hookean materials; Pergamon-Elsevier Science Ltd; Journal of the Mechanics and Physics of Solids; 59; 8; 8-2011; 1488-15050022-5096CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmps.2011.04.016info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S002250961100086Xinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:37:52Zoai:ri.conicet.gov.ar:11336/95096instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:37:52.983CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Cavitation in elastomeric solids: II—Onset-of-cavitation surfaces for Neo-Hookean materials
title Cavitation in elastomeric solids: II—Onset-of-cavitation surfaces for Neo-Hookean materials
spellingShingle Cavitation in elastomeric solids: II—Onset-of-cavitation surfaces for Neo-Hookean materials
Lopez Pamies, Oscar
FINITE STRAIN
MICROSTRUCTURES
INSTABILITIES
BIFURCATION
FAILURE SURFACES
title_short Cavitation in elastomeric solids: II—Onset-of-cavitation surfaces for Neo-Hookean materials
title_full Cavitation in elastomeric solids: II—Onset-of-cavitation surfaces for Neo-Hookean materials
title_fullStr Cavitation in elastomeric solids: II—Onset-of-cavitation surfaces for Neo-Hookean materials
title_full_unstemmed Cavitation in elastomeric solids: II—Onset-of-cavitation surfaces for Neo-Hookean materials
title_sort Cavitation in elastomeric solids: II—Onset-of-cavitation surfaces for Neo-Hookean materials
dc.creator.none.fl_str_mv Lopez Pamies, Oscar
Nakamura, Toshio
Idiart, Martín Ignacio
author Lopez Pamies, Oscar
author_facet Lopez Pamies, Oscar
Nakamura, Toshio
Idiart, Martín Ignacio
author_role author
author2 Nakamura, Toshio
Idiart, Martín Ignacio
author2_role author
author
dc.subject.none.fl_str_mv FINITE STRAIN
MICROSTRUCTURES
INSTABILITIES
BIFURCATION
FAILURE SURFACES
topic FINITE STRAIN
MICROSTRUCTURES
INSTABILITIES
BIFURCATION
FAILURE SURFACES
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.3
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv In Part I of this work we derived a fairly general theory of cavitation in elastomeric solids based on the sudden growth of pre-existing defects. In this article, the theory is used to determine onset-of-cavitation surfaces for Neo-Hookean solids where the defects are isotropically distributed and vacuous. These surfaces correspond to the set of all critical Cauchy stress states at which cavitation ensues; general three-dimensional loadings are considered. Their computation requires the numerical solution of a nonlinear first-order partial differential equation in two variables. The theoretical results indicate that cavitation occurs only for stress states where the three principal Cauchy stresses are tensile, and that the required hydrostatic tensile component increases with increasing shear components. These results are confronted to finite-element simulations for the growth of a small spherical cavity in a Neo-Hookean block under multi-axial loading. Good agreement is found for a wide range of loading conditions. Comparisons with earlier results available in the literature are also provided and discussed. We conclude this work by devising a closed-form approximation to the theoretical surface, which is of remarkable accuracy and mathematical simplicity.
Fil: Lopez Pamies, Oscar. State University of New York; Estados Unidos
Fil: Nakamura, Toshio. State University of New York; Estados Unidos
Fil: Idiart, Martín Ignacio. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Aeronáutica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description In Part I of this work we derived a fairly general theory of cavitation in elastomeric solids based on the sudden growth of pre-existing defects. In this article, the theory is used to determine onset-of-cavitation surfaces for Neo-Hookean solids where the defects are isotropically distributed and vacuous. These surfaces correspond to the set of all critical Cauchy stress states at which cavitation ensues; general three-dimensional loadings are considered. Their computation requires the numerical solution of a nonlinear first-order partial differential equation in two variables. The theoretical results indicate that cavitation occurs only for stress states where the three principal Cauchy stresses are tensile, and that the required hydrostatic tensile component increases with increasing shear components. These results are confronted to finite-element simulations for the growth of a small spherical cavity in a Neo-Hookean block under multi-axial loading. Good agreement is found for a wide range of loading conditions. Comparisons with earlier results available in the literature are also provided and discussed. We conclude this work by devising a closed-form approximation to the theoretical surface, which is of remarkable accuracy and mathematical simplicity.
publishDate 2011
dc.date.none.fl_str_mv 2011-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/95096
Lopez Pamies, Oscar; Nakamura, Toshio; Idiart, Martín Ignacio; Cavitation in elastomeric solids: II—Onset-of-cavitation surfaces for Neo-Hookean materials; Pergamon-Elsevier Science Ltd; Journal of the Mechanics and Physics of Solids; 59; 8; 8-2011; 1488-1505
0022-5096
CONICET Digital
CONICET
url http://hdl.handle.net/11336/95096
identifier_str_mv Lopez Pamies, Oscar; Nakamura, Toshio; Idiart, Martín Ignacio; Cavitation in elastomeric solids: II—Onset-of-cavitation surfaces for Neo-Hookean materials; Pergamon-Elsevier Science Ltd; Journal of the Mechanics and Physics of Solids; 59; 8; 8-2011; 1488-1505
0022-5096
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmps.2011.04.016
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S002250961100086X
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613195578212352
score 13.070432