Cavitation in elastomeric solids: II—Onset-of-cavitation surfaces for Neo-Hookean materials
- Autores
- Lopez Pamies, Oscar; Nakamura, Toshio; Idiart, Martín Ignacio
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In Part I of this work we derived a fairly general theory of cavitation in elastomeric solids based on the sudden growth of pre-existing defects. In this article, the theory is used to determine onset-of-cavitation surfaces for Neo-Hookean solids where the defects are isotropically distributed and vacuous. These surfaces correspond to the set of all critical Cauchy stress states at which cavitation ensues; general three-dimensional loadings are considered. Their computation requires the numerical solution of a nonlinear first-order partial differential equation in two variables. The theoretical results indicate that cavitation occurs only for stress states where the three principal Cauchy stresses are tensile, and that the required hydrostatic tensile component increases with increasing shear components. These results are confronted to finite-element simulations for the growth of a small spherical cavity in a Neo-Hookean block under multi-axial loading. Good agreement is found for a wide range of loading conditions. Comparisons with earlier results available in the literature are also provided and discussed. We conclude this work by devising a closed-form approximation to the theoretical surface, which is of remarkable accuracy and mathematical simplicity.
Fil: Lopez Pamies, Oscar. State University of New York; Estados Unidos
Fil: Nakamura, Toshio. State University of New York; Estados Unidos
Fil: Idiart, Martín Ignacio. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Aeronáutica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
FINITE STRAIN
MICROSTRUCTURES
INSTABILITIES
BIFURCATION
FAILURE SURFACES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/95096
Ver los metadatos del registro completo
id |
CONICETDig_5f92262b90a6e560f3cae36c99e88a76 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/95096 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Cavitation in elastomeric solids: II—Onset-of-cavitation surfaces for Neo-Hookean materialsLopez Pamies, OscarNakamura, ToshioIdiart, Martín IgnacioFINITE STRAINMICROSTRUCTURESINSTABILITIESBIFURCATIONFAILURE SURFACEShttps://purl.org/becyt/ford/2.3https://purl.org/becyt/ford/2In Part I of this work we derived a fairly general theory of cavitation in elastomeric solids based on the sudden growth of pre-existing defects. In this article, the theory is used to determine onset-of-cavitation surfaces for Neo-Hookean solids where the defects are isotropically distributed and vacuous. These surfaces correspond to the set of all critical Cauchy stress states at which cavitation ensues; general three-dimensional loadings are considered. Their computation requires the numerical solution of a nonlinear first-order partial differential equation in two variables. The theoretical results indicate that cavitation occurs only for stress states where the three principal Cauchy stresses are tensile, and that the required hydrostatic tensile component increases with increasing shear components. These results are confronted to finite-element simulations for the growth of a small spherical cavity in a Neo-Hookean block under multi-axial loading. Good agreement is found for a wide range of loading conditions. Comparisons with earlier results available in the literature are also provided and discussed. We conclude this work by devising a closed-form approximation to the theoretical surface, which is of remarkable accuracy and mathematical simplicity.Fil: Lopez Pamies, Oscar. State University of New York; Estados UnidosFil: Nakamura, Toshio. State University of New York; Estados UnidosFil: Idiart, Martín Ignacio. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Aeronáutica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaPergamon-Elsevier Science Ltd2011-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/95096Lopez Pamies, Oscar; Nakamura, Toshio; Idiart, Martín Ignacio; Cavitation in elastomeric solids: II—Onset-of-cavitation surfaces for Neo-Hookean materials; Pergamon-Elsevier Science Ltd; Journal of the Mechanics and Physics of Solids; 59; 8; 8-2011; 1488-15050022-5096CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmps.2011.04.016info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S002250961100086Xinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:37:52Zoai:ri.conicet.gov.ar:11336/95096instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:37:52.983CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Cavitation in elastomeric solids: II—Onset-of-cavitation surfaces for Neo-Hookean materials |
title |
Cavitation in elastomeric solids: II—Onset-of-cavitation surfaces for Neo-Hookean materials |
spellingShingle |
Cavitation in elastomeric solids: II—Onset-of-cavitation surfaces for Neo-Hookean materials Lopez Pamies, Oscar FINITE STRAIN MICROSTRUCTURES INSTABILITIES BIFURCATION FAILURE SURFACES |
title_short |
Cavitation in elastomeric solids: II—Onset-of-cavitation surfaces for Neo-Hookean materials |
title_full |
Cavitation in elastomeric solids: II—Onset-of-cavitation surfaces for Neo-Hookean materials |
title_fullStr |
Cavitation in elastomeric solids: II—Onset-of-cavitation surfaces for Neo-Hookean materials |
title_full_unstemmed |
Cavitation in elastomeric solids: II—Onset-of-cavitation surfaces for Neo-Hookean materials |
title_sort |
Cavitation in elastomeric solids: II—Onset-of-cavitation surfaces for Neo-Hookean materials |
dc.creator.none.fl_str_mv |
Lopez Pamies, Oscar Nakamura, Toshio Idiart, Martín Ignacio |
author |
Lopez Pamies, Oscar |
author_facet |
Lopez Pamies, Oscar Nakamura, Toshio Idiart, Martín Ignacio |
author_role |
author |
author2 |
Nakamura, Toshio Idiart, Martín Ignacio |
author2_role |
author author |
dc.subject.none.fl_str_mv |
FINITE STRAIN MICROSTRUCTURES INSTABILITIES BIFURCATION FAILURE SURFACES |
topic |
FINITE STRAIN MICROSTRUCTURES INSTABILITIES BIFURCATION FAILURE SURFACES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.3 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
In Part I of this work we derived a fairly general theory of cavitation in elastomeric solids based on the sudden growth of pre-existing defects. In this article, the theory is used to determine onset-of-cavitation surfaces for Neo-Hookean solids where the defects are isotropically distributed and vacuous. These surfaces correspond to the set of all critical Cauchy stress states at which cavitation ensues; general three-dimensional loadings are considered. Their computation requires the numerical solution of a nonlinear first-order partial differential equation in two variables. The theoretical results indicate that cavitation occurs only for stress states where the three principal Cauchy stresses are tensile, and that the required hydrostatic tensile component increases with increasing shear components. These results are confronted to finite-element simulations for the growth of a small spherical cavity in a Neo-Hookean block under multi-axial loading. Good agreement is found for a wide range of loading conditions. Comparisons with earlier results available in the literature are also provided and discussed. We conclude this work by devising a closed-form approximation to the theoretical surface, which is of remarkable accuracy and mathematical simplicity. Fil: Lopez Pamies, Oscar. State University of New York; Estados Unidos Fil: Nakamura, Toshio. State University of New York; Estados Unidos Fil: Idiart, Martín Ignacio. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Aeronáutica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
In Part I of this work we derived a fairly general theory of cavitation in elastomeric solids based on the sudden growth of pre-existing defects. In this article, the theory is used to determine onset-of-cavitation surfaces for Neo-Hookean solids where the defects are isotropically distributed and vacuous. These surfaces correspond to the set of all critical Cauchy stress states at which cavitation ensues; general three-dimensional loadings are considered. Their computation requires the numerical solution of a nonlinear first-order partial differential equation in two variables. The theoretical results indicate that cavitation occurs only for stress states where the three principal Cauchy stresses are tensile, and that the required hydrostatic tensile component increases with increasing shear components. These results are confronted to finite-element simulations for the growth of a small spherical cavity in a Neo-Hookean block under multi-axial loading. Good agreement is found for a wide range of loading conditions. Comparisons with earlier results available in the literature are also provided and discussed. We conclude this work by devising a closed-form approximation to the theoretical surface, which is of remarkable accuracy and mathematical simplicity. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/95096 Lopez Pamies, Oscar; Nakamura, Toshio; Idiart, Martín Ignacio; Cavitation in elastomeric solids: II—Onset-of-cavitation surfaces for Neo-Hookean materials; Pergamon-Elsevier Science Ltd; Journal of the Mechanics and Physics of Solids; 59; 8; 8-2011; 1488-1505 0022-5096 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/95096 |
identifier_str_mv |
Lopez Pamies, Oscar; Nakamura, Toshio; Idiart, Martín Ignacio; Cavitation in elastomeric solids: II—Onset-of-cavitation surfaces for Neo-Hookean materials; Pergamon-Elsevier Science Ltd; Journal of the Mechanics and Physics of Solids; 59; 8; 8-2011; 1488-1505 0022-5096 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmps.2011.04.016 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S002250961100086X |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613195578212352 |
score |
13.070432 |