Multiple Exclusion Statistics

Autores
Riccardo, Julián José; Riccardo, Jose Luis; Ramirez Pastor, Antonio Jose; Pasinetti, Pedro Marcelo
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A new distribution for systems of particles in equilibrium obeying the exclusion of correlated states is presented following Haldane's state counting. It relies upon an ansatz to deal with the multiple exclusion that takes place when the states accessible to single particles are spatially correlated and it can be simultaneously excluded by more than one particle. Haldane's statistics and Wu's distribution are recovered in the limit of noncorrelated states of the multiple exclusion statistics. In addition, an exclusion spectrum function G(n) is introduced to account for the dependence of the state exclusion on the occupation number n. The results of thermodynamics and state occupation are shown for ideal lattice gases of linear particles of size k (k-mers) where the multiple exclusion occurs. Remarkable agreement is found with grand-canonical Monte Carlo simulations from k=2 to 10 where the multiple exclusion dominates as k increases.
Fil: Riccardo, Julián José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina
Fil: Riccardo, Jose Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina
Fil: Ramirez Pastor, Antonio Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina
Fil: Pasinetti, Pedro Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina
Materia
Statistical Mechanics
Lattice Models
Monte Carlo Simulations
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/117080

id CONICETDig_6a4a4b2da6b070850b2d28bf6958471b
oai_identifier_str oai:ri.conicet.gov.ar:11336/117080
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Multiple Exclusion StatisticsRiccardo, Julián JoséRiccardo, Jose LuisRamirez Pastor, Antonio JosePasinetti, Pedro MarceloStatistical MechanicsLattice ModelsMonte Carlo Simulationshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1A new distribution for systems of particles in equilibrium obeying the exclusion of correlated states is presented following Haldane's state counting. It relies upon an ansatz to deal with the multiple exclusion that takes place when the states accessible to single particles are spatially correlated and it can be simultaneously excluded by more than one particle. Haldane's statistics and Wu's distribution are recovered in the limit of noncorrelated states of the multiple exclusion statistics. In addition, an exclusion spectrum function G(n) is introduced to account for the dependence of the state exclusion on the occupation number n. The results of thermodynamics and state occupation are shown for ideal lattice gases of linear particles of size k (k-mers) where the multiple exclusion occurs. Remarkable agreement is found with grand-canonical Monte Carlo simulations from k=2 to 10 where the multiple exclusion dominates as k increases.Fil: Riccardo, Julián José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; ArgentinaFil: Riccardo, Jose Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; ArgentinaFil: Ramirez Pastor, Antonio Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; ArgentinaFil: Pasinetti, Pedro Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; ArgentinaAmerican Physical Society2019-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/117080Riccardo, Julián José; Riccardo, Jose Luis; Ramirez Pastor, Antonio Jose; Pasinetti, Pedro Marcelo; Multiple Exclusion Statistics; American Physical Society; Physical Review Letters; 123; 2; 7-2019; 1-50031-9007CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.aps.org/doi/10.1103/PhysRevLett.123.020602info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevLett.123.020602info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1906.04300info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:16:31Zoai:ri.conicet.gov.ar:11336/117080instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:16:32.218CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Multiple Exclusion Statistics
title Multiple Exclusion Statistics
spellingShingle Multiple Exclusion Statistics
Riccardo, Julián José
Statistical Mechanics
Lattice Models
Monte Carlo Simulations
title_short Multiple Exclusion Statistics
title_full Multiple Exclusion Statistics
title_fullStr Multiple Exclusion Statistics
title_full_unstemmed Multiple Exclusion Statistics
title_sort Multiple Exclusion Statistics
dc.creator.none.fl_str_mv Riccardo, Julián José
Riccardo, Jose Luis
Ramirez Pastor, Antonio Jose
Pasinetti, Pedro Marcelo
author Riccardo, Julián José
author_facet Riccardo, Julián José
Riccardo, Jose Luis
Ramirez Pastor, Antonio Jose
Pasinetti, Pedro Marcelo
author_role author
author2 Riccardo, Jose Luis
Ramirez Pastor, Antonio Jose
Pasinetti, Pedro Marcelo
author2_role author
author
author
dc.subject.none.fl_str_mv Statistical Mechanics
Lattice Models
Monte Carlo Simulations
topic Statistical Mechanics
Lattice Models
Monte Carlo Simulations
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv A new distribution for systems of particles in equilibrium obeying the exclusion of correlated states is presented following Haldane's state counting. It relies upon an ansatz to deal with the multiple exclusion that takes place when the states accessible to single particles are spatially correlated and it can be simultaneously excluded by more than one particle. Haldane's statistics and Wu's distribution are recovered in the limit of noncorrelated states of the multiple exclusion statistics. In addition, an exclusion spectrum function G(n) is introduced to account for the dependence of the state exclusion on the occupation number n. The results of thermodynamics and state occupation are shown for ideal lattice gases of linear particles of size k (k-mers) where the multiple exclusion occurs. Remarkable agreement is found with grand-canonical Monte Carlo simulations from k=2 to 10 where the multiple exclusion dominates as k increases.
Fil: Riccardo, Julián José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina
Fil: Riccardo, Jose Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina
Fil: Ramirez Pastor, Antonio Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina
Fil: Pasinetti, Pedro Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina
description A new distribution for systems of particles in equilibrium obeying the exclusion of correlated states is presented following Haldane's state counting. It relies upon an ansatz to deal with the multiple exclusion that takes place when the states accessible to single particles are spatially correlated and it can be simultaneously excluded by more than one particle. Haldane's statistics and Wu's distribution are recovered in the limit of noncorrelated states of the multiple exclusion statistics. In addition, an exclusion spectrum function G(n) is introduced to account for the dependence of the state exclusion on the occupation number n. The results of thermodynamics and state occupation are shown for ideal lattice gases of linear particles of size k (k-mers) where the multiple exclusion occurs. Remarkable agreement is found with grand-canonical Monte Carlo simulations from k=2 to 10 where the multiple exclusion dominates as k increases.
publishDate 2019
dc.date.none.fl_str_mv 2019-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/117080
Riccardo, Julián José; Riccardo, Jose Luis; Ramirez Pastor, Antonio Jose; Pasinetti, Pedro Marcelo; Multiple Exclusion Statistics; American Physical Society; Physical Review Letters; 123; 2; 7-2019; 1-5
0031-9007
CONICET Digital
CONICET
url http://hdl.handle.net/11336/117080
identifier_str_mv Riccardo, Julián José; Riccardo, Jose Luis; Ramirez Pastor, Antonio Jose; Pasinetti, Pedro Marcelo; Multiple Exclusion Statistics; American Physical Society; Physical Review Letters; 123; 2; 7-2019; 1-5
0031-9007
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://link.aps.org/doi/10.1103/PhysRevLett.123.020602
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevLett.123.020602
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1906.04300
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614111103549440
score 13.070432