Multiple Exclusion Statistics
- Autores
- Riccardo, Julián José; Riccardo, Jose Luis; Ramirez Pastor, Antonio Jose; Pasinetti, Pedro Marcelo
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A new distribution for systems of particles in equilibrium obeying the exclusion of correlated states is presented following Haldane's state counting. It relies upon an ansatz to deal with the multiple exclusion that takes place when the states accessible to single particles are spatially correlated and it can be simultaneously excluded by more than one particle. Haldane's statistics and Wu's distribution are recovered in the limit of noncorrelated states of the multiple exclusion statistics. In addition, an exclusion spectrum function G(n) is introduced to account for the dependence of the state exclusion on the occupation number n. The results of thermodynamics and state occupation are shown for ideal lattice gases of linear particles of size k (k-mers) where the multiple exclusion occurs. Remarkable agreement is found with grand-canonical Monte Carlo simulations from k=2 to 10 where the multiple exclusion dominates as k increases.
Fil: Riccardo, Julián José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina
Fil: Riccardo, Jose Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina
Fil: Ramirez Pastor, Antonio Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina
Fil: Pasinetti, Pedro Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina - Materia
-
Statistical Mechanics
Lattice Models
Monte Carlo Simulations - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/117080
Ver los metadatos del registro completo
id |
CONICETDig_6a4a4b2da6b070850b2d28bf6958471b |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/117080 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Multiple Exclusion StatisticsRiccardo, Julián JoséRiccardo, Jose LuisRamirez Pastor, Antonio JosePasinetti, Pedro MarceloStatistical MechanicsLattice ModelsMonte Carlo Simulationshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1A new distribution for systems of particles in equilibrium obeying the exclusion of correlated states is presented following Haldane's state counting. It relies upon an ansatz to deal with the multiple exclusion that takes place when the states accessible to single particles are spatially correlated and it can be simultaneously excluded by more than one particle. Haldane's statistics and Wu's distribution are recovered in the limit of noncorrelated states of the multiple exclusion statistics. In addition, an exclusion spectrum function G(n) is introduced to account for the dependence of the state exclusion on the occupation number n. The results of thermodynamics and state occupation are shown for ideal lattice gases of linear particles of size k (k-mers) where the multiple exclusion occurs. Remarkable agreement is found with grand-canonical Monte Carlo simulations from k=2 to 10 where the multiple exclusion dominates as k increases.Fil: Riccardo, Julián José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; ArgentinaFil: Riccardo, Jose Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; ArgentinaFil: Ramirez Pastor, Antonio Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; ArgentinaFil: Pasinetti, Pedro Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; ArgentinaAmerican Physical Society2019-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/117080Riccardo, Julián José; Riccardo, Jose Luis; Ramirez Pastor, Antonio Jose; Pasinetti, Pedro Marcelo; Multiple Exclusion Statistics; American Physical Society; Physical Review Letters; 123; 2; 7-2019; 1-50031-9007CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.aps.org/doi/10.1103/PhysRevLett.123.020602info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevLett.123.020602info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1906.04300info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:16:31Zoai:ri.conicet.gov.ar:11336/117080instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:16:32.218CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Multiple Exclusion Statistics |
title |
Multiple Exclusion Statistics |
spellingShingle |
Multiple Exclusion Statistics Riccardo, Julián José Statistical Mechanics Lattice Models Monte Carlo Simulations |
title_short |
Multiple Exclusion Statistics |
title_full |
Multiple Exclusion Statistics |
title_fullStr |
Multiple Exclusion Statistics |
title_full_unstemmed |
Multiple Exclusion Statistics |
title_sort |
Multiple Exclusion Statistics |
dc.creator.none.fl_str_mv |
Riccardo, Julián José Riccardo, Jose Luis Ramirez Pastor, Antonio Jose Pasinetti, Pedro Marcelo |
author |
Riccardo, Julián José |
author_facet |
Riccardo, Julián José Riccardo, Jose Luis Ramirez Pastor, Antonio Jose Pasinetti, Pedro Marcelo |
author_role |
author |
author2 |
Riccardo, Jose Luis Ramirez Pastor, Antonio Jose Pasinetti, Pedro Marcelo |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Statistical Mechanics Lattice Models Monte Carlo Simulations |
topic |
Statistical Mechanics Lattice Models Monte Carlo Simulations |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
A new distribution for systems of particles in equilibrium obeying the exclusion of correlated states is presented following Haldane's state counting. It relies upon an ansatz to deal with the multiple exclusion that takes place when the states accessible to single particles are spatially correlated and it can be simultaneously excluded by more than one particle. Haldane's statistics and Wu's distribution are recovered in the limit of noncorrelated states of the multiple exclusion statistics. In addition, an exclusion spectrum function G(n) is introduced to account for the dependence of the state exclusion on the occupation number n. The results of thermodynamics and state occupation are shown for ideal lattice gases of linear particles of size k (k-mers) where the multiple exclusion occurs. Remarkable agreement is found with grand-canonical Monte Carlo simulations from k=2 to 10 where the multiple exclusion dominates as k increases. Fil: Riccardo, Julián José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina Fil: Riccardo, Jose Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina Fil: Ramirez Pastor, Antonio Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina Fil: Pasinetti, Pedro Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina |
description |
A new distribution for systems of particles in equilibrium obeying the exclusion of correlated states is presented following Haldane's state counting. It relies upon an ansatz to deal with the multiple exclusion that takes place when the states accessible to single particles are spatially correlated and it can be simultaneously excluded by more than one particle. Haldane's statistics and Wu's distribution are recovered in the limit of noncorrelated states of the multiple exclusion statistics. In addition, an exclusion spectrum function G(n) is introduced to account for the dependence of the state exclusion on the occupation number n. The results of thermodynamics and state occupation are shown for ideal lattice gases of linear particles of size k (k-mers) where the multiple exclusion occurs. Remarkable agreement is found with grand-canonical Monte Carlo simulations from k=2 to 10 where the multiple exclusion dominates as k increases. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/117080 Riccardo, Julián José; Riccardo, Jose Luis; Ramirez Pastor, Antonio Jose; Pasinetti, Pedro Marcelo; Multiple Exclusion Statistics; American Physical Society; Physical Review Letters; 123; 2; 7-2019; 1-5 0031-9007 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/117080 |
identifier_str_mv |
Riccardo, Julián José; Riccardo, Jose Luis; Ramirez Pastor, Antonio Jose; Pasinetti, Pedro Marcelo; Multiple Exclusion Statistics; American Physical Society; Physical Review Letters; 123; 2; 7-2019; 1-5 0031-9007 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.aps.org/doi/10.1103/PhysRevLett.123.020602 info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevLett.123.020602 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1906.04300 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614111103549440 |
score |
13.070432 |