The role of pulsed electromagnetic fields on the radical pair mechanism

Autores
Castello, Pablo Raul; Jiménez, Pablo Javier; Martino, Carlos F.
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In recent decades, the use of pulsed electromagnetic fields (PEMF) in therapeutics has been one of the main fields of activity in the bioelectromagnetics arena. Nevertheless, progress in this area has been hindered by the lack of consensus on a biophysical mechanism of interaction that can satisfactorily explain how low-level, non-thermal electromagnetic fields would be able to sufficiently affect chemistry as to elicit biological effects in living organisms. This specifically applies in cases where the induced electric fields are too small to generate a biological response of any consequence. A growing body of experimental observations that would explain the nature of these effects speaks strongly about the involvement of a theory known as the radical pair mechanism (RPM). This mechanism explains how a pair of reactive oxygen species with distinct chemical fate can be influenced by a low-level external magnetic field through Zeeman and hyperfine interactions. So far, a study of the effects of complex spatiotemporal signals within the context of the RPM has not been performed. Here, we present a computational investigation of such effects by utilizing a generic PEMF test signal and RPM models of different complexity. Surprisingly, our results show how substantially different chemical results can be obtained within ranges that depend on the specific orientation of the PEMF test signal with respect to the background static magnetic field, its waveform, and both of their amplitudes. These results provide a basis for explaining the distinctive biological relevance of PEMF signals on radical pair chemical reactions.
Fil: Castello, Pablo Raul. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Belgrano. Facultad de Ciencias Exactas y Naturales. Departamento de Química; Argentina
Fil: Jiménez, Pablo Javier. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro.; Argentina
Fil: Martino, Carlos F.. University Johns Hopkins; Estados Unidos
Materia
MAGNETIC EFFECTS
PEMFS
RADICAL PAIR MECHANISM
REACTIVE OXYGEN SPECIES
SPIN BIOCHEMISTRY
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/166098

id CONICETDig_69cfc3539d34db1ea976e8951a99f9df
oai_identifier_str oai:ri.conicet.gov.ar:11336/166098
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling The role of pulsed electromagnetic fields on the radical pair mechanismCastello, Pablo RaulJiménez, Pablo JavierMartino, Carlos F.MAGNETIC EFFECTSPEMFSRADICAL PAIR MECHANISMREACTIVE OXYGEN SPECIESSPIN BIOCHEMISTRYhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1In recent decades, the use of pulsed electromagnetic fields (PEMF) in therapeutics has been one of the main fields of activity in the bioelectromagnetics arena. Nevertheless, progress in this area has been hindered by the lack of consensus on a biophysical mechanism of interaction that can satisfactorily explain how low-level, non-thermal electromagnetic fields would be able to sufficiently affect chemistry as to elicit biological effects in living organisms. This specifically applies in cases where the induced electric fields are too small to generate a biological response of any consequence. A growing body of experimental observations that would explain the nature of these effects speaks strongly about the involvement of a theory known as the radical pair mechanism (RPM). This mechanism explains how a pair of reactive oxygen species with distinct chemical fate can be influenced by a low-level external magnetic field through Zeeman and hyperfine interactions. So far, a study of the effects of complex spatiotemporal signals within the context of the RPM has not been performed. Here, we present a computational investigation of such effects by utilizing a generic PEMF test signal and RPM models of different complexity. Surprisingly, our results show how substantially different chemical results can be obtained within ranges that depend on the specific orientation of the PEMF test signal with respect to the background static magnetic field, its waveform, and both of their amplitudes. These results provide a basis for explaining the distinctive biological relevance of PEMF signals on radical pair chemical reactions.Fil: Castello, Pablo Raul. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Belgrano. Facultad de Ciencias Exactas y Naturales. Departamento de Química; ArgentinaFil: Jiménez, Pablo Javier. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro.; ArgentinaFil: Martino, Carlos F.. University Johns Hopkins; Estados UnidosWiley2021-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/166098Castello, Pablo Raul; Jiménez, Pablo Javier; Martino, Carlos F.; The role of pulsed electromagnetic fields on the radical pair mechanism; Wiley; Bioelectromagnetics.; 42; 6; 7-2021; 491-5000197-8462CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1002/bem.22358info:eu-repo/semantics/altIdentifier/doi/10.1002/bem.22358info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:19:44Zoai:ri.conicet.gov.ar:11336/166098instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:19:45.084CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv The role of pulsed electromagnetic fields on the radical pair mechanism
title The role of pulsed electromagnetic fields on the radical pair mechanism
spellingShingle The role of pulsed electromagnetic fields on the radical pair mechanism
Castello, Pablo Raul
MAGNETIC EFFECTS
PEMFS
RADICAL PAIR MECHANISM
REACTIVE OXYGEN SPECIES
SPIN BIOCHEMISTRY
title_short The role of pulsed electromagnetic fields on the radical pair mechanism
title_full The role of pulsed electromagnetic fields on the radical pair mechanism
title_fullStr The role of pulsed electromagnetic fields on the radical pair mechanism
title_full_unstemmed The role of pulsed electromagnetic fields on the radical pair mechanism
title_sort The role of pulsed electromagnetic fields on the radical pair mechanism
dc.creator.none.fl_str_mv Castello, Pablo Raul
Jiménez, Pablo Javier
Martino, Carlos F.
author Castello, Pablo Raul
author_facet Castello, Pablo Raul
Jiménez, Pablo Javier
Martino, Carlos F.
author_role author
author2 Jiménez, Pablo Javier
Martino, Carlos F.
author2_role author
author
dc.subject.none.fl_str_mv MAGNETIC EFFECTS
PEMFS
RADICAL PAIR MECHANISM
REACTIVE OXYGEN SPECIES
SPIN BIOCHEMISTRY
topic MAGNETIC EFFECTS
PEMFS
RADICAL PAIR MECHANISM
REACTIVE OXYGEN SPECIES
SPIN BIOCHEMISTRY
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In recent decades, the use of pulsed electromagnetic fields (PEMF) in therapeutics has been one of the main fields of activity in the bioelectromagnetics arena. Nevertheless, progress in this area has been hindered by the lack of consensus on a biophysical mechanism of interaction that can satisfactorily explain how low-level, non-thermal electromagnetic fields would be able to sufficiently affect chemistry as to elicit biological effects in living organisms. This specifically applies in cases where the induced electric fields are too small to generate a biological response of any consequence. A growing body of experimental observations that would explain the nature of these effects speaks strongly about the involvement of a theory known as the radical pair mechanism (RPM). This mechanism explains how a pair of reactive oxygen species with distinct chemical fate can be influenced by a low-level external magnetic field through Zeeman and hyperfine interactions. So far, a study of the effects of complex spatiotemporal signals within the context of the RPM has not been performed. Here, we present a computational investigation of such effects by utilizing a generic PEMF test signal and RPM models of different complexity. Surprisingly, our results show how substantially different chemical results can be obtained within ranges that depend on the specific orientation of the PEMF test signal with respect to the background static magnetic field, its waveform, and both of their amplitudes. These results provide a basis for explaining the distinctive biological relevance of PEMF signals on radical pair chemical reactions.
Fil: Castello, Pablo Raul. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Belgrano. Facultad de Ciencias Exactas y Naturales. Departamento de Química; Argentina
Fil: Jiménez, Pablo Javier. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro.; Argentina
Fil: Martino, Carlos F.. University Johns Hopkins; Estados Unidos
description In recent decades, the use of pulsed electromagnetic fields (PEMF) in therapeutics has been one of the main fields of activity in the bioelectromagnetics arena. Nevertheless, progress in this area has been hindered by the lack of consensus on a biophysical mechanism of interaction that can satisfactorily explain how low-level, non-thermal electromagnetic fields would be able to sufficiently affect chemistry as to elicit biological effects in living organisms. This specifically applies in cases where the induced electric fields are too small to generate a biological response of any consequence. A growing body of experimental observations that would explain the nature of these effects speaks strongly about the involvement of a theory known as the radical pair mechanism (RPM). This mechanism explains how a pair of reactive oxygen species with distinct chemical fate can be influenced by a low-level external magnetic field through Zeeman and hyperfine interactions. So far, a study of the effects of complex spatiotemporal signals within the context of the RPM has not been performed. Here, we present a computational investigation of such effects by utilizing a generic PEMF test signal and RPM models of different complexity. Surprisingly, our results show how substantially different chemical results can be obtained within ranges that depend on the specific orientation of the PEMF test signal with respect to the background static magnetic field, its waveform, and both of their amplitudes. These results provide a basis for explaining the distinctive biological relevance of PEMF signals on radical pair chemical reactions.
publishDate 2021
dc.date.none.fl_str_mv 2021-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/166098
Castello, Pablo Raul; Jiménez, Pablo Javier; Martino, Carlos F.; The role of pulsed electromagnetic fields on the radical pair mechanism; Wiley; Bioelectromagnetics.; 42; 6; 7-2021; 491-500
0197-8462
CONICET Digital
CONICET
url http://hdl.handle.net/11336/166098
identifier_str_mv Castello, Pablo Raul; Jiménez, Pablo Javier; Martino, Carlos F.; The role of pulsed electromagnetic fields on the radical pair mechanism; Wiley; Bioelectromagnetics.; 42; 6; 7-2021; 491-500
0197-8462
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1002/bem.22358
info:eu-repo/semantics/altIdentifier/doi/10.1002/bem.22358
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Wiley
publisher.none.fl_str_mv Wiley
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614171906277376
score 13.070432