Phenotypic resistance in photodynamic inactivation unravelled at the single bacterium level
- Autores
- Martinez, Sol Romina; Palacios, Yohana Belén; Heredia, Daniel Alejandro; Agazzi, Maximiliano Luis; Durantini, Andres Matías
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Herein we report a simple fluorescence microscopy methodology that, jointly with four photosensitizers (PSs) and a cell viability marker, allows monitoring of phenotypic bacterial resistance to photodynamic inactivation (PDI) treatments. The PSs, composed of BODIPY dyes, were selected according to their ability to interact with the cell wall and the photoinactivating mechanism involved (type I or type II). In a first approach, the phenotypic heterogeneity allowing bacteria to persist during PDI treatment was evaluated in methicillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli as Gram-positive and Gram-negative models, respectively. By means of propidium iodide (PI), we monitored with spatiotemporal resolution cell viability at the single bacterium level. All the PSs were effective at inactivating pathogens; however, the cationic nonhalogenated PS (compound 1) surpassed the others and was capable of photoinactivating E. coli even under optimal growth conditions. Compound 1 was further tested on two other Gram-negative strains, Pseudomonas aeruginosa and Klebsiella pneumoniae, with outstanding results. All bacterial strains used here are well-known ESKAPE pathogens, which are the leading cause of nosocomial infections worldwide. Thorough data analysis of individual cell survival times revealed clear phenotypic variation expressed in the cell wall that affected PI permeation and thus its intercalation with DNA. For the same bacterial sample, death times may vary from seconds to hours. In addition, the PI incorporation time is also a parameter governed by the phenotypic characteristics of the microbes. Finally, we demonstrate that the results gathered for the bacteria provide direct and unique experimental evidence that supports the time-kill curve profiles.
Fil: Martinez, Sol Romina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina
Fil: Palacios, Yohana Belén. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina
Fil: Heredia, Daniel Alejandro. Universidad Nacional de Río Cuarto. Instituto para el Desarrollo Agroindustrial y de la Salud. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto para el Desarrollo Agroindustrial y de la Salud; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentina
Fil: Agazzi, Maximiliano Luis. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina
Fil: Durantini, Andres Matías. Universidad Nacional de Río Cuarto. Instituto para el Desarrollo Agroindustrial y de la Salud. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto para el Desarrollo Agroindustrial y de la Salud; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentina - Materia
-
ESKAPE PATHOGENS
FLUORESCENCE MICROSCOPY
PHENOTYPIC RESISTANCE
PHOTOACTIVE MOLECULES
PHOTODYNAMIC INACTIVATION
SINGLE CELL - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/132326
Ver los metadatos del registro completo
id |
CONICETDig_690eba868dcbe64d151f493e35e73171 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/132326 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Phenotypic resistance in photodynamic inactivation unravelled at the single bacterium levelMartinez, Sol RominaPalacios, Yohana BelénHeredia, Daniel AlejandroAgazzi, Maximiliano LuisDurantini, Andres MatíasESKAPE PATHOGENSFLUORESCENCE MICROSCOPYPHENOTYPIC RESISTANCEPHOTOACTIVE MOLECULESPHOTODYNAMIC INACTIVATIONSINGLE CELLhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Herein we report a simple fluorescence microscopy methodology that, jointly with four photosensitizers (PSs) and a cell viability marker, allows monitoring of phenotypic bacterial resistance to photodynamic inactivation (PDI) treatments. The PSs, composed of BODIPY dyes, were selected according to their ability to interact with the cell wall and the photoinactivating mechanism involved (type I or type II). In a first approach, the phenotypic heterogeneity allowing bacteria to persist during PDI treatment was evaluated in methicillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli as Gram-positive and Gram-negative models, respectively. By means of propidium iodide (PI), we monitored with spatiotemporal resolution cell viability at the single bacterium level. All the PSs were effective at inactivating pathogens; however, the cationic nonhalogenated PS (compound 1) surpassed the others and was capable of photoinactivating E. coli even under optimal growth conditions. Compound 1 was further tested on two other Gram-negative strains, Pseudomonas aeruginosa and Klebsiella pneumoniae, with outstanding results. All bacterial strains used here are well-known ESKAPE pathogens, which are the leading cause of nosocomial infections worldwide. Thorough data analysis of individual cell survival times revealed clear phenotypic variation expressed in the cell wall that affected PI permeation and thus its intercalation with DNA. For the same bacterial sample, death times may vary from seconds to hours. In addition, the PI incorporation time is also a parameter governed by the phenotypic characteristics of the microbes. Finally, we demonstrate that the results gathered for the bacteria provide direct and unique experimental evidence that supports the time-kill curve profiles.Fil: Martinez, Sol Romina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Palacios, Yohana Belén. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Heredia, Daniel Alejandro. Universidad Nacional de Río Cuarto. Instituto para el Desarrollo Agroindustrial y de la Salud. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto para el Desarrollo Agroindustrial y de la Salud; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; ArgentinaFil: Agazzi, Maximiliano Luis. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Durantini, Andres Matías. Universidad Nacional de Río Cuarto. Instituto para el Desarrollo Agroindustrial y de la Salud. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto para el Desarrollo Agroindustrial y de la Salud; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; ArgentinaAmerican Chemical Society2019-07-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/132326Martinez, Sol Romina; Palacios, Yohana Belén; Heredia, Daniel Alejandro; Agazzi, Maximiliano Luis; Durantini, Andres Matías; Phenotypic resistance in photodynamic inactivation unravelled at the single bacterium level; American Chemical Society; ACS Infectious Diseases; 5; 9; 9-7-2019; 1624-16332373-8227CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/10.1021/acsinfecdis.9b00185info:eu-repo/semantics/altIdentifier/doi/10.1021/acsinfecdis.9b00185info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:23:32Zoai:ri.conicet.gov.ar:11336/132326instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:23:33.114CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Phenotypic resistance in photodynamic inactivation unravelled at the single bacterium level |
title |
Phenotypic resistance in photodynamic inactivation unravelled at the single bacterium level |
spellingShingle |
Phenotypic resistance in photodynamic inactivation unravelled at the single bacterium level Martinez, Sol Romina ESKAPE PATHOGENS FLUORESCENCE MICROSCOPY PHENOTYPIC RESISTANCE PHOTOACTIVE MOLECULES PHOTODYNAMIC INACTIVATION SINGLE CELL |
title_short |
Phenotypic resistance in photodynamic inactivation unravelled at the single bacterium level |
title_full |
Phenotypic resistance in photodynamic inactivation unravelled at the single bacterium level |
title_fullStr |
Phenotypic resistance in photodynamic inactivation unravelled at the single bacterium level |
title_full_unstemmed |
Phenotypic resistance in photodynamic inactivation unravelled at the single bacterium level |
title_sort |
Phenotypic resistance in photodynamic inactivation unravelled at the single bacterium level |
dc.creator.none.fl_str_mv |
Martinez, Sol Romina Palacios, Yohana Belén Heredia, Daniel Alejandro Agazzi, Maximiliano Luis Durantini, Andres Matías |
author |
Martinez, Sol Romina |
author_facet |
Martinez, Sol Romina Palacios, Yohana Belén Heredia, Daniel Alejandro Agazzi, Maximiliano Luis Durantini, Andres Matías |
author_role |
author |
author2 |
Palacios, Yohana Belén Heredia, Daniel Alejandro Agazzi, Maximiliano Luis Durantini, Andres Matías |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
ESKAPE PATHOGENS FLUORESCENCE MICROSCOPY PHENOTYPIC RESISTANCE PHOTOACTIVE MOLECULES PHOTODYNAMIC INACTIVATION SINGLE CELL |
topic |
ESKAPE PATHOGENS FLUORESCENCE MICROSCOPY PHENOTYPIC RESISTANCE PHOTOACTIVE MOLECULES PHOTODYNAMIC INACTIVATION SINGLE CELL |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Herein we report a simple fluorescence microscopy methodology that, jointly with four photosensitizers (PSs) and a cell viability marker, allows monitoring of phenotypic bacterial resistance to photodynamic inactivation (PDI) treatments. The PSs, composed of BODIPY dyes, were selected according to their ability to interact with the cell wall and the photoinactivating mechanism involved (type I or type II). In a first approach, the phenotypic heterogeneity allowing bacteria to persist during PDI treatment was evaluated in methicillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli as Gram-positive and Gram-negative models, respectively. By means of propidium iodide (PI), we monitored with spatiotemporal resolution cell viability at the single bacterium level. All the PSs were effective at inactivating pathogens; however, the cationic nonhalogenated PS (compound 1) surpassed the others and was capable of photoinactivating E. coli even under optimal growth conditions. Compound 1 was further tested on two other Gram-negative strains, Pseudomonas aeruginosa and Klebsiella pneumoniae, with outstanding results. All bacterial strains used here are well-known ESKAPE pathogens, which are the leading cause of nosocomial infections worldwide. Thorough data analysis of individual cell survival times revealed clear phenotypic variation expressed in the cell wall that affected PI permeation and thus its intercalation with DNA. For the same bacterial sample, death times may vary from seconds to hours. In addition, the PI incorporation time is also a parameter governed by the phenotypic characteristics of the microbes. Finally, we demonstrate that the results gathered for the bacteria provide direct and unique experimental evidence that supports the time-kill curve profiles. Fil: Martinez, Sol Romina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina Fil: Palacios, Yohana Belén. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina Fil: Heredia, Daniel Alejandro. Universidad Nacional de Río Cuarto. Instituto para el Desarrollo Agroindustrial y de la Salud. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto para el Desarrollo Agroindustrial y de la Salud; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentina Fil: Agazzi, Maximiliano Luis. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina Fil: Durantini, Andres Matías. Universidad Nacional de Río Cuarto. Instituto para el Desarrollo Agroindustrial y de la Salud. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto para el Desarrollo Agroindustrial y de la Salud; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentina |
description |
Herein we report a simple fluorescence microscopy methodology that, jointly with four photosensitizers (PSs) and a cell viability marker, allows monitoring of phenotypic bacterial resistance to photodynamic inactivation (PDI) treatments. The PSs, composed of BODIPY dyes, were selected according to their ability to interact with the cell wall and the photoinactivating mechanism involved (type I or type II). In a first approach, the phenotypic heterogeneity allowing bacteria to persist during PDI treatment was evaluated in methicillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli as Gram-positive and Gram-negative models, respectively. By means of propidium iodide (PI), we monitored with spatiotemporal resolution cell viability at the single bacterium level. All the PSs were effective at inactivating pathogens; however, the cationic nonhalogenated PS (compound 1) surpassed the others and was capable of photoinactivating E. coli even under optimal growth conditions. Compound 1 was further tested on two other Gram-negative strains, Pseudomonas aeruginosa and Klebsiella pneumoniae, with outstanding results. All bacterial strains used here are well-known ESKAPE pathogens, which are the leading cause of nosocomial infections worldwide. Thorough data analysis of individual cell survival times revealed clear phenotypic variation expressed in the cell wall that affected PI permeation and thus its intercalation with DNA. For the same bacterial sample, death times may vary from seconds to hours. In addition, the PI incorporation time is also a parameter governed by the phenotypic characteristics of the microbes. Finally, we demonstrate that the results gathered for the bacteria provide direct and unique experimental evidence that supports the time-kill curve profiles. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-07-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/132326 Martinez, Sol Romina; Palacios, Yohana Belén; Heredia, Daniel Alejandro; Agazzi, Maximiliano Luis; Durantini, Andres Matías; Phenotypic resistance in photodynamic inactivation unravelled at the single bacterium level; American Chemical Society; ACS Infectious Diseases; 5; 9; 9-7-2019; 1624-1633 2373-8227 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/132326 |
identifier_str_mv |
Martinez, Sol Romina; Palacios, Yohana Belén; Heredia, Daniel Alejandro; Agazzi, Maximiliano Luis; Durantini, Andres Matías; Phenotypic resistance in photodynamic inactivation unravelled at the single bacterium level; American Chemical Society; ACS Infectious Diseases; 5; 9; 9-7-2019; 1624-1633 2373-8227 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/10.1021/acsinfecdis.9b00185 info:eu-repo/semantics/altIdentifier/doi/10.1021/acsinfecdis.9b00185 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Chemical Society |
publisher.none.fl_str_mv |
American Chemical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082647078469632 |
score |
13.051919 |