Neurally driven synthesis of learned, complex vocalizations

Autores
Arneodo, Ezequiel Matías; Chen, Shukai; Brown, Daril E.; Gilja, Vikash; Gentner, Timothy Q.
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Brain machine interfaces (BMIs) hold promise to restore impaired motor function and serve as powerful tools to study learned motor skill. While limb-based motor prosthetic systems have leveraged nonhuman primates as an important animal model,1–4 speech prostheses lack a similar animal model and are more limited in terms of neural interface technology, brain coverage, and behavioral study design.5–7 Songbirds are an attractive model for learned complex vocal behavior. Birdsong shares a number of unique similarities with human speech,8–10 and its study has yielded general insight into multiple mechanisms and circuits behind learning, execution, and maintenance of vocal motor skill.11–18 In addition, the biomechanics of song production bear similarity to those of humans and some nonhuman primates.19–23 Here, we demonstrate a vocal synthesizer for birdsong, realized by mapping neural population activity recorded from electrode arrays implanted in the premotor nucleus HVC onto low-dimensional compressed representations of song, using simple computational methods that are implementable in real time. Using a generative biomechanical model of the vocal organ (syrinx) as the low-dimensional target for these mappings allows for the synthesis of vocalizations that match the bird's own song. These results provide proof of concept that high-dimensional, complex natural behaviors can be directly synthesized from ongoing neural activity. This may inspire similar approaches to prosthetics in other species by exploiting knowledge of the peripheral systems and the temporal structure of their output.
Fil: Arneodo, Ezequiel Matías. University of California; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Chen, Shukai. University of California; Estados Unidos
Fil: Brown, Daril E.. University of California; Estados Unidos
Fil: Gilja, Vikash. University of California; Estados Unidos
Fil: Gentner, Timothy Q.. The Kavli Institute For Brain And Mind; Estados Unidos. University of California; Estados Unidos
Materia
BIOPROSTHETICS
BIRDSONG
BRAIN MACHINE INTERFACES
ELECTROPHYSIOLOGY
NEURAL NETWORKS
NONLINEAR DYNAMICS
SPEECH
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/179036

id CONICETDig_cbf47c9d4039a5e79c96d607445ceec4
oai_identifier_str oai:ri.conicet.gov.ar:11336/179036
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Neurally driven synthesis of learned, complex vocalizationsArneodo, Ezequiel MatíasChen, ShukaiBrown, Daril E.Gilja, VikashGentner, Timothy Q.BIOPROSTHETICSBIRDSONGBRAIN MACHINE INTERFACESELECTROPHYSIOLOGYNEURAL NETWORKSNONLINEAR DYNAMICSSPEECHhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Brain machine interfaces (BMIs) hold promise to restore impaired motor function and serve as powerful tools to study learned motor skill. While limb-based motor prosthetic systems have leveraged nonhuman primates as an important animal model,1–4 speech prostheses lack a similar animal model and are more limited in terms of neural interface technology, brain coverage, and behavioral study design.5–7 Songbirds are an attractive model for learned complex vocal behavior. Birdsong shares a number of unique similarities with human speech,8–10 and its study has yielded general insight into multiple mechanisms and circuits behind learning, execution, and maintenance of vocal motor skill.11–18 In addition, the biomechanics of song production bear similarity to those of humans and some nonhuman primates.19–23 Here, we demonstrate a vocal synthesizer for birdsong, realized by mapping neural population activity recorded from electrode arrays implanted in the premotor nucleus HVC onto low-dimensional compressed representations of song, using simple computational methods that are implementable in real time. Using a generative biomechanical model of the vocal organ (syrinx) as the low-dimensional target for these mappings allows for the synthesis of vocalizations that match the bird's own song. These results provide proof of concept that high-dimensional, complex natural behaviors can be directly synthesized from ongoing neural activity. This may inspire similar approaches to prosthetics in other species by exploiting knowledge of the peripheral systems and the temporal structure of their output.Fil: Arneodo, Ezequiel Matías. University of California; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Chen, Shukai. University of California; Estados UnidosFil: Brown, Daril E.. University of California; Estados UnidosFil: Gilja, Vikash. University of California; Estados UnidosFil: Gentner, Timothy Q.. The Kavli Institute For Brain And Mind; Estados Unidos. University of California; Estados UnidosCell Press2021-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/179036Arneodo, Ezequiel Matías; Chen, Shukai; Brown, Daril E.; Gilja, Vikash; Gentner, Timothy Q.; Neurally driven synthesis of learned, complex vocalizations; Cell Press; Current Biology; 31; 15; 8-2021; 3419-34250960-9822CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://doi.org/10.1016/j.cub.2021.05.035info:eu-repo/semantics/altIdentifier/doi/10.1016/j.cub.2021.05.035info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:44:27Zoai:ri.conicet.gov.ar:11336/179036instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:44:27.483CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Neurally driven synthesis of learned, complex vocalizations
title Neurally driven synthesis of learned, complex vocalizations
spellingShingle Neurally driven synthesis of learned, complex vocalizations
Arneodo, Ezequiel Matías
BIOPROSTHETICS
BIRDSONG
BRAIN MACHINE INTERFACES
ELECTROPHYSIOLOGY
NEURAL NETWORKS
NONLINEAR DYNAMICS
SPEECH
title_short Neurally driven synthesis of learned, complex vocalizations
title_full Neurally driven synthesis of learned, complex vocalizations
title_fullStr Neurally driven synthesis of learned, complex vocalizations
title_full_unstemmed Neurally driven synthesis of learned, complex vocalizations
title_sort Neurally driven synthesis of learned, complex vocalizations
dc.creator.none.fl_str_mv Arneodo, Ezequiel Matías
Chen, Shukai
Brown, Daril E.
Gilja, Vikash
Gentner, Timothy Q.
author Arneodo, Ezequiel Matías
author_facet Arneodo, Ezequiel Matías
Chen, Shukai
Brown, Daril E.
Gilja, Vikash
Gentner, Timothy Q.
author_role author
author2 Chen, Shukai
Brown, Daril E.
Gilja, Vikash
Gentner, Timothy Q.
author2_role author
author
author
author
dc.subject.none.fl_str_mv BIOPROSTHETICS
BIRDSONG
BRAIN MACHINE INTERFACES
ELECTROPHYSIOLOGY
NEURAL NETWORKS
NONLINEAR DYNAMICS
SPEECH
topic BIOPROSTHETICS
BIRDSONG
BRAIN MACHINE INTERFACES
ELECTROPHYSIOLOGY
NEURAL NETWORKS
NONLINEAR DYNAMICS
SPEECH
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Brain machine interfaces (BMIs) hold promise to restore impaired motor function and serve as powerful tools to study learned motor skill. While limb-based motor prosthetic systems have leveraged nonhuman primates as an important animal model,1–4 speech prostheses lack a similar animal model and are more limited in terms of neural interface technology, brain coverage, and behavioral study design.5–7 Songbirds are an attractive model for learned complex vocal behavior. Birdsong shares a number of unique similarities with human speech,8–10 and its study has yielded general insight into multiple mechanisms and circuits behind learning, execution, and maintenance of vocal motor skill.11–18 In addition, the biomechanics of song production bear similarity to those of humans and some nonhuman primates.19–23 Here, we demonstrate a vocal synthesizer for birdsong, realized by mapping neural population activity recorded from electrode arrays implanted in the premotor nucleus HVC onto low-dimensional compressed representations of song, using simple computational methods that are implementable in real time. Using a generative biomechanical model of the vocal organ (syrinx) as the low-dimensional target for these mappings allows for the synthesis of vocalizations that match the bird's own song. These results provide proof of concept that high-dimensional, complex natural behaviors can be directly synthesized from ongoing neural activity. This may inspire similar approaches to prosthetics in other species by exploiting knowledge of the peripheral systems and the temporal structure of their output.
Fil: Arneodo, Ezequiel Matías. University of California; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Chen, Shukai. University of California; Estados Unidos
Fil: Brown, Daril E.. University of California; Estados Unidos
Fil: Gilja, Vikash. University of California; Estados Unidos
Fil: Gentner, Timothy Q.. The Kavli Institute For Brain And Mind; Estados Unidos. University of California; Estados Unidos
description Brain machine interfaces (BMIs) hold promise to restore impaired motor function and serve as powerful tools to study learned motor skill. While limb-based motor prosthetic systems have leveraged nonhuman primates as an important animal model,1–4 speech prostheses lack a similar animal model and are more limited in terms of neural interface technology, brain coverage, and behavioral study design.5–7 Songbirds are an attractive model for learned complex vocal behavior. Birdsong shares a number of unique similarities with human speech,8–10 and its study has yielded general insight into multiple mechanisms and circuits behind learning, execution, and maintenance of vocal motor skill.11–18 In addition, the biomechanics of song production bear similarity to those of humans and some nonhuman primates.19–23 Here, we demonstrate a vocal synthesizer for birdsong, realized by mapping neural population activity recorded from electrode arrays implanted in the premotor nucleus HVC onto low-dimensional compressed representations of song, using simple computational methods that are implementable in real time. Using a generative biomechanical model of the vocal organ (syrinx) as the low-dimensional target for these mappings allows for the synthesis of vocalizations that match the bird's own song. These results provide proof of concept that high-dimensional, complex natural behaviors can be directly synthesized from ongoing neural activity. This may inspire similar approaches to prosthetics in other species by exploiting knowledge of the peripheral systems and the temporal structure of their output.
publishDate 2021
dc.date.none.fl_str_mv 2021-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/179036
Arneodo, Ezequiel Matías; Chen, Shukai; Brown, Daril E.; Gilja, Vikash; Gentner, Timothy Q.; Neurally driven synthesis of learned, complex vocalizations; Cell Press; Current Biology; 31; 15; 8-2021; 3419-3425
0960-9822
CONICET Digital
CONICET
url http://hdl.handle.net/11336/179036
identifier_str_mv Arneodo, Ezequiel Matías; Chen, Shukai; Brown, Daril E.; Gilja, Vikash; Gentner, Timothy Q.; Neurally driven synthesis of learned, complex vocalizations; Cell Press; Current Biology; 31; 15; 8-2021; 3419-3425
0960-9822
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://doi.org/10.1016/j.cub.2021.05.035
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.cub.2021.05.035
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Cell Press
publisher.none.fl_str_mv Cell Press
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268666916241408
score 13.13397