Trapping Charge Mechanism in Hv1 Channels (CiHv1)
- Autores
- Fernández, Miguel; Alvear Arias, Juan José; Carmona, Emerson M.; Carrillo, Christian; Pena Pichicoi, Antonio; Hernandez Ochoa, Erick O.; Neely, Alan; Alvarez, Osvaldo; Latorre, Ramon; Garate, Jose A.; Gonzalez, Carlos
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The majority of voltage-gated ion channels contain a defined voltage-sensing domain and a pore domain composed of highly conserved amino acid residues that confer electrical excitability via electromechanical coupling. In this sense, the voltage-gated proton channel (Hv1) is a unique protein in that voltage-sensing, proton permeation and pH-dependent modulation involve the same structural region. In fact, these processes synergistically work in concert, and it is difficult to separate them. To investigate the process of Hv1 voltage sensor trapping, we follow voltage-sensor movements directly by leveraging mutations that enable the measurement of Hv1 channel gating currents. We uncover that the process of voltage sensor displacement is due to two driving forces. The first reveals that mutations in the selectivity filter (D160) located in the S1 transmembrane interact with the voltage sensor. More hydrophobic amino acids increase the energy barrier for voltage sensor activation. On the other hand, the effect of positive charges near position 264 promotes the formation of salt bridges between the arginines of the voltage sensor domain, achieving a stable conformation over time. Our results suggest that the activation of the Hv1 voltage sensor is governed by electrostatic–hydrophobic interactions, and S4 arginines, N264 and selectivity filter (D160) are essential in the Ciona-Hv1 to understand the trapping of the voltage sensor.
Fil: Fernández, Miguel. Universidad de Valparaíso; Chile
Fil: Alvear Arias, Juan José. Universidad de Valparaíso; Chile. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Biodiversidad y Biología Experimental y Aplicada. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad y Biología Experimental y Aplicada; Argentina
Fil: Carmona, Emerson M.. No especifíca;
Fil: Carrillo, Christian. Universidad de Valparaíso; Chile
Fil: Pena Pichicoi, Antonio. Universidad de Valparaíso; Chile
Fil: Hernandez Ochoa, Erick O.. University of Maryland; Estados Unidos
Fil: Neely, Alan. Universidad de Valparaíso; Chile
Fil: Alvarez, Osvaldo. Universidad de Chile; Chile
Fil: Latorre, Ramon. Universidad de Valparaíso; Chile
Fil: Garate, Jose A.. Universidad San Sebastián; Chile
Fil: Gonzalez, Carlos. University of Texas at Austin; Estados Unidos - Materia
-
CHARGE TRAPPING
CIONA INTESTINALIS
GATING CURRENTS
PROTON CHANNEL - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/228111
Ver los metadatos del registro completo
id |
CONICETDig_68a270ee69ef4c97092a140f83d25987 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/228111 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Trapping Charge Mechanism in Hv1 Channels (CiHv1)Fernández, MiguelAlvear Arias, Juan JoséCarmona, Emerson M.Carrillo, ChristianPena Pichicoi, AntonioHernandez Ochoa, Erick O.Neely, AlanAlvarez, OsvaldoLatorre, RamonGarate, Jose A.Gonzalez, CarlosCHARGE TRAPPINGCIONA INTESTINALISGATING CURRENTSPROTON CHANNELhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1The majority of voltage-gated ion channels contain a defined voltage-sensing domain and a pore domain composed of highly conserved amino acid residues that confer electrical excitability via electromechanical coupling. In this sense, the voltage-gated proton channel (Hv1) is a unique protein in that voltage-sensing, proton permeation and pH-dependent modulation involve the same structural region. In fact, these processes synergistically work in concert, and it is difficult to separate them. To investigate the process of Hv1 voltage sensor trapping, we follow voltage-sensor movements directly by leveraging mutations that enable the measurement of Hv1 channel gating currents. We uncover that the process of voltage sensor displacement is due to two driving forces. The first reveals that mutations in the selectivity filter (D160) located in the S1 transmembrane interact with the voltage sensor. More hydrophobic amino acids increase the energy barrier for voltage sensor activation. On the other hand, the effect of positive charges near position 264 promotes the formation of salt bridges between the arginines of the voltage sensor domain, achieving a stable conformation over time. Our results suggest that the activation of the Hv1 voltage sensor is governed by electrostatic–hydrophobic interactions, and S4 arginines, N264 and selectivity filter (D160) are essential in the Ciona-Hv1 to understand the trapping of the voltage sensor.Fil: Fernández, Miguel. Universidad de Valparaíso; ChileFil: Alvear Arias, Juan José. Universidad de Valparaíso; Chile. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Biodiversidad y Biología Experimental y Aplicada. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad y Biología Experimental y Aplicada; ArgentinaFil: Carmona, Emerson M.. No especifíca;Fil: Carrillo, Christian. Universidad de Valparaíso; ChileFil: Pena Pichicoi, Antonio. Universidad de Valparaíso; ChileFil: Hernandez Ochoa, Erick O.. University of Maryland; Estados UnidosFil: Neely, Alan. Universidad de Valparaíso; ChileFil: Alvarez, Osvaldo. Universidad de Chile; ChileFil: Latorre, Ramon. Universidad de Valparaíso; ChileFil: Garate, Jose A.. Universidad San Sebastián; ChileFil: Gonzalez, Carlos. University of Texas at Austin; Estados UnidosMolecular Diversity Preservation International2023-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/228111Fernández, Miguel; Alvear Arias, Juan José; Carmona, Emerson M.; Carrillo, Christian; Pena Pichicoi, Antonio; et al.; Trapping Charge Mechanism in Hv1 Channels (CiHv1); Molecular Diversity Preservation International; International Journal of Molecular Sciences; 25; 1; 12-2023; 1-211422-0067CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1422-0067/25/1/426info:eu-repo/semantics/altIdentifier/doi/10.3390/ijms25010426info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T12:08:26Zoai:ri.conicet.gov.ar:11336/228111instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 12:08:26.67CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Trapping Charge Mechanism in Hv1 Channels (CiHv1) |
title |
Trapping Charge Mechanism in Hv1 Channels (CiHv1) |
spellingShingle |
Trapping Charge Mechanism in Hv1 Channels (CiHv1) Fernández, Miguel CHARGE TRAPPING CIONA INTESTINALIS GATING CURRENTS PROTON CHANNEL |
title_short |
Trapping Charge Mechanism in Hv1 Channels (CiHv1) |
title_full |
Trapping Charge Mechanism in Hv1 Channels (CiHv1) |
title_fullStr |
Trapping Charge Mechanism in Hv1 Channels (CiHv1) |
title_full_unstemmed |
Trapping Charge Mechanism in Hv1 Channels (CiHv1) |
title_sort |
Trapping Charge Mechanism in Hv1 Channels (CiHv1) |
dc.creator.none.fl_str_mv |
Fernández, Miguel Alvear Arias, Juan José Carmona, Emerson M. Carrillo, Christian Pena Pichicoi, Antonio Hernandez Ochoa, Erick O. Neely, Alan Alvarez, Osvaldo Latorre, Ramon Garate, Jose A. Gonzalez, Carlos |
author |
Fernández, Miguel |
author_facet |
Fernández, Miguel Alvear Arias, Juan José Carmona, Emerson M. Carrillo, Christian Pena Pichicoi, Antonio Hernandez Ochoa, Erick O. Neely, Alan Alvarez, Osvaldo Latorre, Ramon Garate, Jose A. Gonzalez, Carlos |
author_role |
author |
author2 |
Alvear Arias, Juan José Carmona, Emerson M. Carrillo, Christian Pena Pichicoi, Antonio Hernandez Ochoa, Erick O. Neely, Alan Alvarez, Osvaldo Latorre, Ramon Garate, Jose A. Gonzalez, Carlos |
author2_role |
author author author author author author author author author author |
dc.subject.none.fl_str_mv |
CHARGE TRAPPING CIONA INTESTINALIS GATING CURRENTS PROTON CHANNEL |
topic |
CHARGE TRAPPING CIONA INTESTINALIS GATING CURRENTS PROTON CHANNEL |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The majority of voltage-gated ion channels contain a defined voltage-sensing domain and a pore domain composed of highly conserved amino acid residues that confer electrical excitability via electromechanical coupling. In this sense, the voltage-gated proton channel (Hv1) is a unique protein in that voltage-sensing, proton permeation and pH-dependent modulation involve the same structural region. In fact, these processes synergistically work in concert, and it is difficult to separate them. To investigate the process of Hv1 voltage sensor trapping, we follow voltage-sensor movements directly by leveraging mutations that enable the measurement of Hv1 channel gating currents. We uncover that the process of voltage sensor displacement is due to two driving forces. The first reveals that mutations in the selectivity filter (D160) located in the S1 transmembrane interact with the voltage sensor. More hydrophobic amino acids increase the energy barrier for voltage sensor activation. On the other hand, the effect of positive charges near position 264 promotes the formation of salt bridges between the arginines of the voltage sensor domain, achieving a stable conformation over time. Our results suggest that the activation of the Hv1 voltage sensor is governed by electrostatic–hydrophobic interactions, and S4 arginines, N264 and selectivity filter (D160) are essential in the Ciona-Hv1 to understand the trapping of the voltage sensor. Fil: Fernández, Miguel. Universidad de Valparaíso; Chile Fil: Alvear Arias, Juan José. Universidad de Valparaíso; Chile. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Biodiversidad y Biología Experimental y Aplicada. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad y Biología Experimental y Aplicada; Argentina Fil: Carmona, Emerson M.. No especifíca; Fil: Carrillo, Christian. Universidad de Valparaíso; Chile Fil: Pena Pichicoi, Antonio. Universidad de Valparaíso; Chile Fil: Hernandez Ochoa, Erick O.. University of Maryland; Estados Unidos Fil: Neely, Alan. Universidad de Valparaíso; Chile Fil: Alvarez, Osvaldo. Universidad de Chile; Chile Fil: Latorre, Ramon. Universidad de Valparaíso; Chile Fil: Garate, Jose A.. Universidad San Sebastián; Chile Fil: Gonzalez, Carlos. University of Texas at Austin; Estados Unidos |
description |
The majority of voltage-gated ion channels contain a defined voltage-sensing domain and a pore domain composed of highly conserved amino acid residues that confer electrical excitability via electromechanical coupling. In this sense, the voltage-gated proton channel (Hv1) is a unique protein in that voltage-sensing, proton permeation and pH-dependent modulation involve the same structural region. In fact, these processes synergistically work in concert, and it is difficult to separate them. To investigate the process of Hv1 voltage sensor trapping, we follow voltage-sensor movements directly by leveraging mutations that enable the measurement of Hv1 channel gating currents. We uncover that the process of voltage sensor displacement is due to two driving forces. The first reveals that mutations in the selectivity filter (D160) located in the S1 transmembrane interact with the voltage sensor. More hydrophobic amino acids increase the energy barrier for voltage sensor activation. On the other hand, the effect of positive charges near position 264 promotes the formation of salt bridges between the arginines of the voltage sensor domain, achieving a stable conformation over time. Our results suggest that the activation of the Hv1 voltage sensor is governed by electrostatic–hydrophobic interactions, and S4 arginines, N264 and selectivity filter (D160) are essential in the Ciona-Hv1 to understand the trapping of the voltage sensor. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/228111 Fernández, Miguel; Alvear Arias, Juan José; Carmona, Emerson M.; Carrillo, Christian; Pena Pichicoi, Antonio; et al.; Trapping Charge Mechanism in Hv1 Channels (CiHv1); Molecular Diversity Preservation International; International Journal of Molecular Sciences; 25; 1; 12-2023; 1-21 1422-0067 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/228111 |
identifier_str_mv |
Fernández, Miguel; Alvear Arias, Juan José; Carmona, Emerson M.; Carrillo, Christian; Pena Pichicoi, Antonio; et al.; Trapping Charge Mechanism in Hv1 Channels (CiHv1); Molecular Diversity Preservation International; International Journal of Molecular Sciences; 25; 1; 12-2023; 1-21 1422-0067 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1422-0067/25/1/426 info:eu-repo/semantics/altIdentifier/doi/10.3390/ijms25010426 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Molecular Diversity Preservation International |
publisher.none.fl_str_mv |
Molecular Diversity Preservation International |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846782455550312448 |
score |
12.982451 |