Trapping Charge Mechanism in Hv1 Channels (CiHv1)

Autores
Fernández, Miguel; Alvear Arias, Juan José; Carmona, Emerson M.; Carrillo, Christian; Pena Pichicoi, Antonio; Hernandez Ochoa, Erick O.; Neely, Alan; Alvarez, Osvaldo; Latorre, Ramon; Garate, Jose A.; Gonzalez, Carlos
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The majority of voltage-gated ion channels contain a defined voltage-sensing domain and a pore domain composed of highly conserved amino acid residues that confer electrical excitability via electromechanical coupling. In this sense, the voltage-gated proton channel (Hv1) is a unique protein in that voltage-sensing, proton permeation and pH-dependent modulation involve the same structural region. In fact, these processes synergistically work in concert, and it is difficult to separate them. To investigate the process of Hv1 voltage sensor trapping, we follow voltage-sensor movements directly by leveraging mutations that enable the measurement of Hv1 channel gating currents. We uncover that the process of voltage sensor displacement is due to two driving forces. The first reveals that mutations in the selectivity filter (D160) located in the S1 transmembrane interact with the voltage sensor. More hydrophobic amino acids increase the energy barrier for voltage sensor activation. On the other hand, the effect of positive charges near position 264 promotes the formation of salt bridges between the arginines of the voltage sensor domain, achieving a stable conformation over time. Our results suggest that the activation of the Hv1 voltage sensor is governed by electrostatic–hydrophobic interactions, and S4 arginines, N264 and selectivity filter (D160) are essential in the Ciona-Hv1 to understand the trapping of the voltage sensor.
Fil: Fernández, Miguel. Universidad de Valparaíso; Chile
Fil: Alvear Arias, Juan José. Universidad de Valparaíso; Chile. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Biodiversidad y Biología Experimental y Aplicada. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad y Biología Experimental y Aplicada; Argentina
Fil: Carmona, Emerson M.. No especifíca;
Fil: Carrillo, Christian. Universidad de Valparaíso; Chile
Fil: Pena Pichicoi, Antonio. Universidad de Valparaíso; Chile
Fil: Hernandez Ochoa, Erick O.. University of Maryland; Estados Unidos
Fil: Neely, Alan. Universidad de Valparaíso; Chile
Fil: Alvarez, Osvaldo. Universidad de Chile; Chile
Fil: Latorre, Ramon. Universidad de Valparaíso; Chile
Fil: Garate, Jose A.. Universidad San Sebastián; Chile
Fil: Gonzalez, Carlos. University of Texas at Austin; Estados Unidos
Materia
CHARGE TRAPPING
CIONA INTESTINALIS
GATING CURRENTS
PROTON CHANNEL
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/228111

id CONICETDig_68a270ee69ef4c97092a140f83d25987
oai_identifier_str oai:ri.conicet.gov.ar:11336/228111
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Trapping Charge Mechanism in Hv1 Channels (CiHv1)Fernández, MiguelAlvear Arias, Juan JoséCarmona, Emerson M.Carrillo, ChristianPena Pichicoi, AntonioHernandez Ochoa, Erick O.Neely, AlanAlvarez, OsvaldoLatorre, RamonGarate, Jose A.Gonzalez, CarlosCHARGE TRAPPINGCIONA INTESTINALISGATING CURRENTSPROTON CHANNELhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1The majority of voltage-gated ion channels contain a defined voltage-sensing domain and a pore domain composed of highly conserved amino acid residues that confer electrical excitability via electromechanical coupling. In this sense, the voltage-gated proton channel (Hv1) is a unique protein in that voltage-sensing, proton permeation and pH-dependent modulation involve the same structural region. In fact, these processes synergistically work in concert, and it is difficult to separate them. To investigate the process of Hv1 voltage sensor trapping, we follow voltage-sensor movements directly by leveraging mutations that enable the measurement of Hv1 channel gating currents. We uncover that the process of voltage sensor displacement is due to two driving forces. The first reveals that mutations in the selectivity filter (D160) located in the S1 transmembrane interact with the voltage sensor. More hydrophobic amino acids increase the energy barrier for voltage sensor activation. On the other hand, the effect of positive charges near position 264 promotes the formation of salt bridges between the arginines of the voltage sensor domain, achieving a stable conformation over time. Our results suggest that the activation of the Hv1 voltage sensor is governed by electrostatic–hydrophobic interactions, and S4 arginines, N264 and selectivity filter (D160) are essential in the Ciona-Hv1 to understand the trapping of the voltage sensor.Fil: Fernández, Miguel. Universidad de Valparaíso; ChileFil: Alvear Arias, Juan José. Universidad de Valparaíso; Chile. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Biodiversidad y Biología Experimental y Aplicada. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad y Biología Experimental y Aplicada; ArgentinaFil: Carmona, Emerson M.. No especifíca;Fil: Carrillo, Christian. Universidad de Valparaíso; ChileFil: Pena Pichicoi, Antonio. Universidad de Valparaíso; ChileFil: Hernandez Ochoa, Erick O.. University of Maryland; Estados UnidosFil: Neely, Alan. Universidad de Valparaíso; ChileFil: Alvarez, Osvaldo. Universidad de Chile; ChileFil: Latorre, Ramon. Universidad de Valparaíso; ChileFil: Garate, Jose A.. Universidad San Sebastián; ChileFil: Gonzalez, Carlos. University of Texas at Austin; Estados UnidosMolecular Diversity Preservation International2023-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/228111Fernández, Miguel; Alvear Arias, Juan José; Carmona, Emerson M.; Carrillo, Christian; Pena Pichicoi, Antonio; et al.; Trapping Charge Mechanism in Hv1 Channels (CiHv1); Molecular Diversity Preservation International; International Journal of Molecular Sciences; 25; 1; 12-2023; 1-211422-0067CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1422-0067/25/1/426info:eu-repo/semantics/altIdentifier/doi/10.3390/ijms25010426info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T12:08:26Zoai:ri.conicet.gov.ar:11336/228111instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 12:08:26.67CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Trapping Charge Mechanism in Hv1 Channels (CiHv1)
title Trapping Charge Mechanism in Hv1 Channels (CiHv1)
spellingShingle Trapping Charge Mechanism in Hv1 Channels (CiHv1)
Fernández, Miguel
CHARGE TRAPPING
CIONA INTESTINALIS
GATING CURRENTS
PROTON CHANNEL
title_short Trapping Charge Mechanism in Hv1 Channels (CiHv1)
title_full Trapping Charge Mechanism in Hv1 Channels (CiHv1)
title_fullStr Trapping Charge Mechanism in Hv1 Channels (CiHv1)
title_full_unstemmed Trapping Charge Mechanism in Hv1 Channels (CiHv1)
title_sort Trapping Charge Mechanism in Hv1 Channels (CiHv1)
dc.creator.none.fl_str_mv Fernández, Miguel
Alvear Arias, Juan José
Carmona, Emerson M.
Carrillo, Christian
Pena Pichicoi, Antonio
Hernandez Ochoa, Erick O.
Neely, Alan
Alvarez, Osvaldo
Latorre, Ramon
Garate, Jose A.
Gonzalez, Carlos
author Fernández, Miguel
author_facet Fernández, Miguel
Alvear Arias, Juan José
Carmona, Emerson M.
Carrillo, Christian
Pena Pichicoi, Antonio
Hernandez Ochoa, Erick O.
Neely, Alan
Alvarez, Osvaldo
Latorre, Ramon
Garate, Jose A.
Gonzalez, Carlos
author_role author
author2 Alvear Arias, Juan José
Carmona, Emerson M.
Carrillo, Christian
Pena Pichicoi, Antonio
Hernandez Ochoa, Erick O.
Neely, Alan
Alvarez, Osvaldo
Latorre, Ramon
Garate, Jose A.
Gonzalez, Carlos
author2_role author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv CHARGE TRAPPING
CIONA INTESTINALIS
GATING CURRENTS
PROTON CHANNEL
topic CHARGE TRAPPING
CIONA INTESTINALIS
GATING CURRENTS
PROTON CHANNEL
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The majority of voltage-gated ion channels contain a defined voltage-sensing domain and a pore domain composed of highly conserved amino acid residues that confer electrical excitability via electromechanical coupling. In this sense, the voltage-gated proton channel (Hv1) is a unique protein in that voltage-sensing, proton permeation and pH-dependent modulation involve the same structural region. In fact, these processes synergistically work in concert, and it is difficult to separate them. To investigate the process of Hv1 voltage sensor trapping, we follow voltage-sensor movements directly by leveraging mutations that enable the measurement of Hv1 channel gating currents. We uncover that the process of voltage sensor displacement is due to two driving forces. The first reveals that mutations in the selectivity filter (D160) located in the S1 transmembrane interact with the voltage sensor. More hydrophobic amino acids increase the energy barrier for voltage sensor activation. On the other hand, the effect of positive charges near position 264 promotes the formation of salt bridges between the arginines of the voltage sensor domain, achieving a stable conformation over time. Our results suggest that the activation of the Hv1 voltage sensor is governed by electrostatic–hydrophobic interactions, and S4 arginines, N264 and selectivity filter (D160) are essential in the Ciona-Hv1 to understand the trapping of the voltage sensor.
Fil: Fernández, Miguel. Universidad de Valparaíso; Chile
Fil: Alvear Arias, Juan José. Universidad de Valparaíso; Chile. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Biodiversidad y Biología Experimental y Aplicada. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad y Biología Experimental y Aplicada; Argentina
Fil: Carmona, Emerson M.. No especifíca;
Fil: Carrillo, Christian. Universidad de Valparaíso; Chile
Fil: Pena Pichicoi, Antonio. Universidad de Valparaíso; Chile
Fil: Hernandez Ochoa, Erick O.. University of Maryland; Estados Unidos
Fil: Neely, Alan. Universidad de Valparaíso; Chile
Fil: Alvarez, Osvaldo. Universidad de Chile; Chile
Fil: Latorre, Ramon. Universidad de Valparaíso; Chile
Fil: Garate, Jose A.. Universidad San Sebastián; Chile
Fil: Gonzalez, Carlos. University of Texas at Austin; Estados Unidos
description The majority of voltage-gated ion channels contain a defined voltage-sensing domain and a pore domain composed of highly conserved amino acid residues that confer electrical excitability via electromechanical coupling. In this sense, the voltage-gated proton channel (Hv1) is a unique protein in that voltage-sensing, proton permeation and pH-dependent modulation involve the same structural region. In fact, these processes synergistically work in concert, and it is difficult to separate them. To investigate the process of Hv1 voltage sensor trapping, we follow voltage-sensor movements directly by leveraging mutations that enable the measurement of Hv1 channel gating currents. We uncover that the process of voltage sensor displacement is due to two driving forces. The first reveals that mutations in the selectivity filter (D160) located in the S1 transmembrane interact with the voltage sensor. More hydrophobic amino acids increase the energy barrier for voltage sensor activation. On the other hand, the effect of positive charges near position 264 promotes the formation of salt bridges between the arginines of the voltage sensor domain, achieving a stable conformation over time. Our results suggest that the activation of the Hv1 voltage sensor is governed by electrostatic–hydrophobic interactions, and S4 arginines, N264 and selectivity filter (D160) are essential in the Ciona-Hv1 to understand the trapping of the voltage sensor.
publishDate 2023
dc.date.none.fl_str_mv 2023-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/228111
Fernández, Miguel; Alvear Arias, Juan José; Carmona, Emerson M.; Carrillo, Christian; Pena Pichicoi, Antonio; et al.; Trapping Charge Mechanism in Hv1 Channels (CiHv1); Molecular Diversity Preservation International; International Journal of Molecular Sciences; 25; 1; 12-2023; 1-21
1422-0067
CONICET Digital
CONICET
url http://hdl.handle.net/11336/228111
identifier_str_mv Fernández, Miguel; Alvear Arias, Juan José; Carmona, Emerson M.; Carrillo, Christian; Pena Pichicoi, Antonio; et al.; Trapping Charge Mechanism in Hv1 Channels (CiHv1); Molecular Diversity Preservation International; International Journal of Molecular Sciences; 25; 1; 12-2023; 1-21
1422-0067
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1422-0067/25/1/426
info:eu-repo/semantics/altIdentifier/doi/10.3390/ijms25010426
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Molecular Diversity Preservation International
publisher.none.fl_str_mv Molecular Diversity Preservation International
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846782455550312448
score 12.982451