Paramagnetic salt and agarose recipes for phantoms with desired T1 and T2 values for low‐field MRI

Autores
Jordanova, Kalina V.; Fraenza, Carla Cecilia; Martin, Michele N.; Tian, Ye; Shen, Sheng; Vaughn, Christopher E.; Walsh, Kevin J.; Walsh, Casey; Sappo, Charlotte R.; Ogier, Stephen E.; Poorman, Megan E.; Teixeira, Rui P.; Grissom, William A.; Nayak, Krishna S.; Rosen, Matthew S.; Webb, Andrew G.; Greenbaum, Steven G.; Witherspoon, Velencia J.; Keenan, Kathryn E.
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Tissue-mimicking reference phantoms are indispensable for the development andoptimization of magnetic resonance (MR) measurement sequences. Phantoms havegreatest utility when they mimic the MR signals arising from tissue physiology;however, many of the properties underlying these signals, including tissue relaxationcharacteristics, can vary as a function of magnetic field strength. There hasbeen renewed interest in magnetic resonance imaging (MRI) at field strengths lessthan 1 T, and phantoms developed for higher field strengths may not be physiologicallyrelevant at these lower fields. This work focuses on developing materials with specific relaxation properties for lower magnetic field strengths. Specifically, we developed recipes that can be used to create synthetic samples for target nuclear magnetic resonance relaxation values for fields between 0.0065 and 0.55 T. T1 and T2 mixing models for agarose-based gels doped with a paramagnetic salt (one of CuSO4, GdCl3, MnCl2, or NiCl2) were created using relaxation measurements of synthetic gel samples at 0.0065, 0.064, and 0.55 T. Measurements were evaluated for variability with respect to measurement repeatability and changing synthesis protocolor laboratory temperature. The mixing models were used to identify formulations ofagarose and salt composition to approximately mimic the relaxation times of five neurologicaltissues (blood, cerebrospinal fluid, fat, gray matter, and white matter) at0.0065, 0.0475, 0.05, 0.064, and 0.55 T. These mimic sample formulations were measuredat each field strength. Of these samples, the GdCl3 and NiCl2 measurementswere closest to the target tissue relaxation times. The GdCl3 or NiCl2 mixing modelrecipes are recommended for creating target relaxation samples below 0.55 T. Thiswork can help development of MRI methods and applications for low-field systemsand applications.
Fil: Jordanova, Kalina V.. National Institute of Standards and Technology; Estados Unidos
Fil: Fraenza, Carla Cecilia. City University Of New York. Hunter College; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Martin, Michele N.. National Institute of Standards and Technology; Estados Unidos
Fil: Tian, Ye. University of Southern California; Estados Unidos
Fil: Shen, Sheng. Massachusetts General Hospital And Harvard Medical Scho; Estados Unidos
Fil: Vaughn, Christopher E.. Vanderbilt University; Estados Unidos
Fil: Walsh, Kevin J.. Ohio State University; Estados Unidos
Fil: Walsh, Casey. City University Of New York. Hunter College; Estados Unidos
Fil: Sappo, Charlotte R.. Vanderbilt University; Estados Unidos
Fil: Ogier, Stephen E.. National Institute Of Standards And Technology; Estados Unidos. State University of Colorado at Boulder; Estados Unidos
Fil: Poorman, Megan E.. Hyperfine; Estados Unidos
Fil: Teixeira, Rui P.. Hyperfine; Estados Unidos
Fil: Grissom, William A.. Vanderbilt University; Estados Unidos
Fil: Nayak, Krishna S.. University of Southern California; Estados Unidos
Fil: Rosen, Matthew S.. Harvard University; Estados Unidos
Fil: Webb, Andrew G.. Leiden University. Leiden University Medical Center.; Países Bajos
Fil: Greenbaum, Steven G.. City University Of New York. Hunter College; Estados Unidos
Fil: Witherspoon, Velencia J.. University of Tulane; Estados Unidos
Fil: Keenan, Kathryn E.. National Institute Of Standards And Technology; Estados Unidos
Materia
LOW-FIELD
NEUROLOGICAL
PHANTOMS
QUANTITATIVE
RELAXATION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/266380

id CONICETDig_6888d3aa8e3e6f69f721e74f37374ef9
oai_identifier_str oai:ri.conicet.gov.ar:11336/266380
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Paramagnetic salt and agarose recipes for phantoms with desired T1 and T2 values for low‐field MRIJordanova, Kalina V.Fraenza, Carla CeciliaMartin, Michele N.Tian, YeShen, ShengVaughn, Christopher E.Walsh, Kevin J.Walsh, CaseySappo, Charlotte R.Ogier, Stephen E.Poorman, Megan E.Teixeira, Rui P.Grissom, William A.Nayak, Krishna S.Rosen, Matthew S.Webb, Andrew G.Greenbaum, Steven G.Witherspoon, Velencia J.Keenan, Kathryn E.LOW-FIELDNEUROLOGICALPHANTOMSQUANTITATIVERELAXATIONhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Tissue-mimicking reference phantoms are indispensable for the development andoptimization of magnetic resonance (MR) measurement sequences. Phantoms havegreatest utility when they mimic the MR signals arising from tissue physiology;however, many of the properties underlying these signals, including tissue relaxationcharacteristics, can vary as a function of magnetic field strength. There hasbeen renewed interest in magnetic resonance imaging (MRI) at field strengths lessthan 1 T, and phantoms developed for higher field strengths may not be physiologicallyrelevant at these lower fields. This work focuses on developing materials with specific relaxation properties for lower magnetic field strengths. Specifically, we developed recipes that can be used to create synthetic samples for target nuclear magnetic resonance relaxation values for fields between 0.0065 and 0.55 T. T1 and T2 mixing models for agarose-based gels doped with a paramagnetic salt (one of CuSO4, GdCl3, MnCl2, or NiCl2) were created using relaxation measurements of synthetic gel samples at 0.0065, 0.064, and 0.55 T. Measurements were evaluated for variability with respect to measurement repeatability and changing synthesis protocolor laboratory temperature. The mixing models were used to identify formulations ofagarose and salt composition to approximately mimic the relaxation times of five neurologicaltissues (blood, cerebrospinal fluid, fat, gray matter, and white matter) at0.0065, 0.0475, 0.05, 0.064, and 0.55 T. These mimic sample formulations were measuredat each field strength. Of these samples, the GdCl3 and NiCl2 measurementswere closest to the target tissue relaxation times. The GdCl3 or NiCl2 mixing modelrecipes are recommended for creating target relaxation samples below 0.55 T. Thiswork can help development of MRI methods and applications for low-field systemsand applications.Fil: Jordanova, Kalina V.. National Institute of Standards and Technology; Estados UnidosFil: Fraenza, Carla Cecilia. City University Of New York. Hunter College; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Martin, Michele N.. National Institute of Standards and Technology; Estados UnidosFil: Tian, Ye. University of Southern California; Estados UnidosFil: Shen, Sheng. Massachusetts General Hospital And Harvard Medical Scho; Estados UnidosFil: Vaughn, Christopher E.. Vanderbilt University; Estados UnidosFil: Walsh, Kevin J.. Ohio State University; Estados UnidosFil: Walsh, Casey. City University Of New York. Hunter College; Estados UnidosFil: Sappo, Charlotte R.. Vanderbilt University; Estados UnidosFil: Ogier, Stephen E.. National Institute Of Standards And Technology; Estados Unidos. State University of Colorado at Boulder; Estados UnidosFil: Poorman, Megan E.. Hyperfine; Estados UnidosFil: Teixeira, Rui P.. Hyperfine; Estados UnidosFil: Grissom, William A.. Vanderbilt University; Estados UnidosFil: Nayak, Krishna S.. University of Southern California; Estados UnidosFil: Rosen, Matthew S.. Harvard University; Estados UnidosFil: Webb, Andrew G.. Leiden University. Leiden University Medical Center.; Países BajosFil: Greenbaum, Steven G.. City University Of New York. Hunter College; Estados UnidosFil: Witherspoon, Velencia J.. University of Tulane; Estados UnidosFil: Keenan, Kathryn E.. National Institute Of Standards And Technology; Estados UnidosJohn Wiley & Sons Ltd2024-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/266380Jordanova, Kalina V.; Fraenza, Carla Cecilia; Martin, Michele N.; Tian, Ye; Shen, Sheng; et al.; Paramagnetic salt and agarose recipes for phantoms with desired T1 and T2 values for low‐field MRI; John Wiley & Sons Ltd; Nmr In Biomedicine; 38; 1; 11-2024; 1-120952-3480CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/nbm.5281info:eu-repo/semantics/altIdentifier/doi/10.1002/nbm.5281info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:27:35Zoai:ri.conicet.gov.ar:11336/266380instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:27:35.761CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Paramagnetic salt and agarose recipes for phantoms with desired T1 and T2 values for low‐field MRI
title Paramagnetic salt and agarose recipes for phantoms with desired T1 and T2 values for low‐field MRI
spellingShingle Paramagnetic salt and agarose recipes for phantoms with desired T1 and T2 values for low‐field MRI
Jordanova, Kalina V.
LOW-FIELD
NEUROLOGICAL
PHANTOMS
QUANTITATIVE
RELAXATION
title_short Paramagnetic salt and agarose recipes for phantoms with desired T1 and T2 values for low‐field MRI
title_full Paramagnetic salt and agarose recipes for phantoms with desired T1 and T2 values for low‐field MRI
title_fullStr Paramagnetic salt and agarose recipes for phantoms with desired T1 and T2 values for low‐field MRI
title_full_unstemmed Paramagnetic salt and agarose recipes for phantoms with desired T1 and T2 values for low‐field MRI
title_sort Paramagnetic salt and agarose recipes for phantoms with desired T1 and T2 values for low‐field MRI
dc.creator.none.fl_str_mv Jordanova, Kalina V.
Fraenza, Carla Cecilia
Martin, Michele N.
Tian, Ye
Shen, Sheng
Vaughn, Christopher E.
Walsh, Kevin J.
Walsh, Casey
Sappo, Charlotte R.
Ogier, Stephen E.
Poorman, Megan E.
Teixeira, Rui P.
Grissom, William A.
Nayak, Krishna S.
Rosen, Matthew S.
Webb, Andrew G.
Greenbaum, Steven G.
Witherspoon, Velencia J.
Keenan, Kathryn E.
author Jordanova, Kalina V.
author_facet Jordanova, Kalina V.
Fraenza, Carla Cecilia
Martin, Michele N.
Tian, Ye
Shen, Sheng
Vaughn, Christopher E.
Walsh, Kevin J.
Walsh, Casey
Sappo, Charlotte R.
Ogier, Stephen E.
Poorman, Megan E.
Teixeira, Rui P.
Grissom, William A.
Nayak, Krishna S.
Rosen, Matthew S.
Webb, Andrew G.
Greenbaum, Steven G.
Witherspoon, Velencia J.
Keenan, Kathryn E.
author_role author
author2 Fraenza, Carla Cecilia
Martin, Michele N.
Tian, Ye
Shen, Sheng
Vaughn, Christopher E.
Walsh, Kevin J.
Walsh, Casey
Sappo, Charlotte R.
Ogier, Stephen E.
Poorman, Megan E.
Teixeira, Rui P.
Grissom, William A.
Nayak, Krishna S.
Rosen, Matthew S.
Webb, Andrew G.
Greenbaum, Steven G.
Witherspoon, Velencia J.
Keenan, Kathryn E.
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv LOW-FIELD
NEUROLOGICAL
PHANTOMS
QUANTITATIVE
RELAXATION
topic LOW-FIELD
NEUROLOGICAL
PHANTOMS
QUANTITATIVE
RELAXATION
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Tissue-mimicking reference phantoms are indispensable for the development andoptimization of magnetic resonance (MR) measurement sequences. Phantoms havegreatest utility when they mimic the MR signals arising from tissue physiology;however, many of the properties underlying these signals, including tissue relaxationcharacteristics, can vary as a function of magnetic field strength. There hasbeen renewed interest in magnetic resonance imaging (MRI) at field strengths lessthan 1 T, and phantoms developed for higher field strengths may not be physiologicallyrelevant at these lower fields. This work focuses on developing materials with specific relaxation properties for lower magnetic field strengths. Specifically, we developed recipes that can be used to create synthetic samples for target nuclear magnetic resonance relaxation values for fields between 0.0065 and 0.55 T. T1 and T2 mixing models for agarose-based gels doped with a paramagnetic salt (one of CuSO4, GdCl3, MnCl2, or NiCl2) were created using relaxation measurements of synthetic gel samples at 0.0065, 0.064, and 0.55 T. Measurements were evaluated for variability with respect to measurement repeatability and changing synthesis protocolor laboratory temperature. The mixing models were used to identify formulations ofagarose and salt composition to approximately mimic the relaxation times of five neurologicaltissues (blood, cerebrospinal fluid, fat, gray matter, and white matter) at0.0065, 0.0475, 0.05, 0.064, and 0.55 T. These mimic sample formulations were measuredat each field strength. Of these samples, the GdCl3 and NiCl2 measurementswere closest to the target tissue relaxation times. The GdCl3 or NiCl2 mixing modelrecipes are recommended for creating target relaxation samples below 0.55 T. Thiswork can help development of MRI methods and applications for low-field systemsand applications.
Fil: Jordanova, Kalina V.. National Institute of Standards and Technology; Estados Unidos
Fil: Fraenza, Carla Cecilia. City University Of New York. Hunter College; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Martin, Michele N.. National Institute of Standards and Technology; Estados Unidos
Fil: Tian, Ye. University of Southern California; Estados Unidos
Fil: Shen, Sheng. Massachusetts General Hospital And Harvard Medical Scho; Estados Unidos
Fil: Vaughn, Christopher E.. Vanderbilt University; Estados Unidos
Fil: Walsh, Kevin J.. Ohio State University; Estados Unidos
Fil: Walsh, Casey. City University Of New York. Hunter College; Estados Unidos
Fil: Sappo, Charlotte R.. Vanderbilt University; Estados Unidos
Fil: Ogier, Stephen E.. National Institute Of Standards And Technology; Estados Unidos. State University of Colorado at Boulder; Estados Unidos
Fil: Poorman, Megan E.. Hyperfine; Estados Unidos
Fil: Teixeira, Rui P.. Hyperfine; Estados Unidos
Fil: Grissom, William A.. Vanderbilt University; Estados Unidos
Fil: Nayak, Krishna S.. University of Southern California; Estados Unidos
Fil: Rosen, Matthew S.. Harvard University; Estados Unidos
Fil: Webb, Andrew G.. Leiden University. Leiden University Medical Center.; Países Bajos
Fil: Greenbaum, Steven G.. City University Of New York. Hunter College; Estados Unidos
Fil: Witherspoon, Velencia J.. University of Tulane; Estados Unidos
Fil: Keenan, Kathryn E.. National Institute Of Standards And Technology; Estados Unidos
description Tissue-mimicking reference phantoms are indispensable for the development andoptimization of magnetic resonance (MR) measurement sequences. Phantoms havegreatest utility when they mimic the MR signals arising from tissue physiology;however, many of the properties underlying these signals, including tissue relaxationcharacteristics, can vary as a function of magnetic field strength. There hasbeen renewed interest in magnetic resonance imaging (MRI) at field strengths lessthan 1 T, and phantoms developed for higher field strengths may not be physiologicallyrelevant at these lower fields. This work focuses on developing materials with specific relaxation properties for lower magnetic field strengths. Specifically, we developed recipes that can be used to create synthetic samples for target nuclear magnetic resonance relaxation values for fields between 0.0065 and 0.55 T. T1 and T2 mixing models for agarose-based gels doped with a paramagnetic salt (one of CuSO4, GdCl3, MnCl2, or NiCl2) were created using relaxation measurements of synthetic gel samples at 0.0065, 0.064, and 0.55 T. Measurements were evaluated for variability with respect to measurement repeatability and changing synthesis protocolor laboratory temperature. The mixing models were used to identify formulations ofagarose and salt composition to approximately mimic the relaxation times of five neurologicaltissues (blood, cerebrospinal fluid, fat, gray matter, and white matter) at0.0065, 0.0475, 0.05, 0.064, and 0.55 T. These mimic sample formulations were measuredat each field strength. Of these samples, the GdCl3 and NiCl2 measurementswere closest to the target tissue relaxation times. The GdCl3 or NiCl2 mixing modelrecipes are recommended for creating target relaxation samples below 0.55 T. Thiswork can help development of MRI methods and applications for low-field systemsand applications.
publishDate 2024
dc.date.none.fl_str_mv 2024-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/266380
Jordanova, Kalina V.; Fraenza, Carla Cecilia; Martin, Michele N.; Tian, Ye; Shen, Sheng; et al.; Paramagnetic salt and agarose recipes for phantoms with desired T1 and T2 values for low‐field MRI; John Wiley & Sons Ltd; Nmr In Biomedicine; 38; 1; 11-2024; 1-12
0952-3480
CONICET Digital
CONICET
url http://hdl.handle.net/11336/266380
identifier_str_mv Jordanova, Kalina V.; Fraenza, Carla Cecilia; Martin, Michele N.; Tian, Ye; Shen, Sheng; et al.; Paramagnetic salt and agarose recipes for phantoms with desired T1 and T2 values for low‐field MRI; John Wiley & Sons Ltd; Nmr In Biomedicine; 38; 1; 11-2024; 1-12
0952-3480
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/nbm.5281
info:eu-repo/semantics/altIdentifier/doi/10.1002/nbm.5281
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv John Wiley & Sons Ltd
publisher.none.fl_str_mv John Wiley & Sons Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846781845706899456
score 12.982451