Paramagnetic salt and agarose recipes for phantoms with desired T1 and T2 values for low‐field MRI
- Autores
- Jordanova, Kalina V.; Fraenza, Carla Cecilia; Martin, Michele N.; Tian, Ye; Shen, Sheng; Vaughn, Christopher E.; Walsh, Kevin J.; Walsh, Casey; Sappo, Charlotte R.; Ogier, Stephen E.; Poorman, Megan E.; Teixeira, Rui P.; Grissom, William A.; Nayak, Krishna S.; Rosen, Matthew S.; Webb, Andrew G.; Greenbaum, Steven G.; Witherspoon, Velencia J.; Keenan, Kathryn E.
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Tissue-mimicking reference phantoms are indispensable for the development andoptimization of magnetic resonance (MR) measurement sequences. Phantoms havegreatest utility when they mimic the MR signals arising from tissue physiology;however, many of the properties underlying these signals, including tissue relaxationcharacteristics, can vary as a function of magnetic field strength. There hasbeen renewed interest in magnetic resonance imaging (MRI) at field strengths lessthan 1 T, and phantoms developed for higher field strengths may not be physiologicallyrelevant at these lower fields. This work focuses on developing materials with specific relaxation properties for lower magnetic field strengths. Specifically, we developed recipes that can be used to create synthetic samples for target nuclear magnetic resonance relaxation values for fields between 0.0065 and 0.55 T. T1 and T2 mixing models for agarose-based gels doped with a paramagnetic salt (one of CuSO4, GdCl3, MnCl2, or NiCl2) were created using relaxation measurements of synthetic gel samples at 0.0065, 0.064, and 0.55 T. Measurements were evaluated for variability with respect to measurement repeatability and changing synthesis protocolor laboratory temperature. The mixing models were used to identify formulations ofagarose and salt composition to approximately mimic the relaxation times of five neurologicaltissues (blood, cerebrospinal fluid, fat, gray matter, and white matter) at0.0065, 0.0475, 0.05, 0.064, and 0.55 T. These mimic sample formulations were measuredat each field strength. Of these samples, the GdCl3 and NiCl2 measurementswere closest to the target tissue relaxation times. The GdCl3 or NiCl2 mixing modelrecipes are recommended for creating target relaxation samples below 0.55 T. Thiswork can help development of MRI methods and applications for low-field systemsand applications.
Fil: Jordanova, Kalina V.. National Institute of Standards and Technology; Estados Unidos
Fil: Fraenza, Carla Cecilia. City University Of New York. Hunter College; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Martin, Michele N.. National Institute of Standards and Technology; Estados Unidos
Fil: Tian, Ye. University of Southern California; Estados Unidos
Fil: Shen, Sheng. Massachusetts General Hospital And Harvard Medical Scho; Estados Unidos
Fil: Vaughn, Christopher E.. Vanderbilt University; Estados Unidos
Fil: Walsh, Kevin J.. Ohio State University; Estados Unidos
Fil: Walsh, Casey. City University Of New York. Hunter College; Estados Unidos
Fil: Sappo, Charlotte R.. Vanderbilt University; Estados Unidos
Fil: Ogier, Stephen E.. National Institute Of Standards And Technology; Estados Unidos. State University of Colorado at Boulder; Estados Unidos
Fil: Poorman, Megan E.. Hyperfine; Estados Unidos
Fil: Teixeira, Rui P.. Hyperfine; Estados Unidos
Fil: Grissom, William A.. Vanderbilt University; Estados Unidos
Fil: Nayak, Krishna S.. University of Southern California; Estados Unidos
Fil: Rosen, Matthew S.. Harvard University; Estados Unidos
Fil: Webb, Andrew G.. Leiden University. Leiden University Medical Center.; Países Bajos
Fil: Greenbaum, Steven G.. City University Of New York. Hunter College; Estados Unidos
Fil: Witherspoon, Velencia J.. University of Tulane; Estados Unidos
Fil: Keenan, Kathryn E.. National Institute Of Standards And Technology; Estados Unidos - Materia
-
LOW-FIELD
NEUROLOGICAL
PHANTOMS
QUANTITATIVE
RELAXATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/266380
Ver los metadatos del registro completo
| id |
CONICETDig_6888d3aa8e3e6f69f721e74f37374ef9 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/266380 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Paramagnetic salt and agarose recipes for phantoms with desired T1 and T2 values for low‐field MRIJordanova, Kalina V.Fraenza, Carla CeciliaMartin, Michele N.Tian, YeShen, ShengVaughn, Christopher E.Walsh, Kevin J.Walsh, CaseySappo, Charlotte R.Ogier, Stephen E.Poorman, Megan E.Teixeira, Rui P.Grissom, William A.Nayak, Krishna S.Rosen, Matthew S.Webb, Andrew G.Greenbaum, Steven G.Witherspoon, Velencia J.Keenan, Kathryn E.LOW-FIELDNEUROLOGICALPHANTOMSQUANTITATIVERELAXATIONhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Tissue-mimicking reference phantoms are indispensable for the development andoptimization of magnetic resonance (MR) measurement sequences. Phantoms havegreatest utility when they mimic the MR signals arising from tissue physiology;however, many of the properties underlying these signals, including tissue relaxationcharacteristics, can vary as a function of magnetic field strength. There hasbeen renewed interest in magnetic resonance imaging (MRI) at field strengths lessthan 1 T, and phantoms developed for higher field strengths may not be physiologicallyrelevant at these lower fields. This work focuses on developing materials with specific relaxation properties for lower magnetic field strengths. Specifically, we developed recipes that can be used to create synthetic samples for target nuclear magnetic resonance relaxation values for fields between 0.0065 and 0.55 T. T1 and T2 mixing models for agarose-based gels doped with a paramagnetic salt (one of CuSO4, GdCl3, MnCl2, or NiCl2) were created using relaxation measurements of synthetic gel samples at 0.0065, 0.064, and 0.55 T. Measurements were evaluated for variability with respect to measurement repeatability and changing synthesis protocolor laboratory temperature. The mixing models were used to identify formulations ofagarose and salt composition to approximately mimic the relaxation times of five neurologicaltissues (blood, cerebrospinal fluid, fat, gray matter, and white matter) at0.0065, 0.0475, 0.05, 0.064, and 0.55 T. These mimic sample formulations were measuredat each field strength. Of these samples, the GdCl3 and NiCl2 measurementswere closest to the target tissue relaxation times. The GdCl3 or NiCl2 mixing modelrecipes are recommended for creating target relaxation samples below 0.55 T. Thiswork can help development of MRI methods and applications for low-field systemsand applications.Fil: Jordanova, Kalina V.. National Institute of Standards and Technology; Estados UnidosFil: Fraenza, Carla Cecilia. City University Of New York. Hunter College; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Martin, Michele N.. National Institute of Standards and Technology; Estados UnidosFil: Tian, Ye. University of Southern California; Estados UnidosFil: Shen, Sheng. Massachusetts General Hospital And Harvard Medical Scho; Estados UnidosFil: Vaughn, Christopher E.. Vanderbilt University; Estados UnidosFil: Walsh, Kevin J.. Ohio State University; Estados UnidosFil: Walsh, Casey. City University Of New York. Hunter College; Estados UnidosFil: Sappo, Charlotte R.. Vanderbilt University; Estados UnidosFil: Ogier, Stephen E.. National Institute Of Standards And Technology; Estados Unidos. State University of Colorado at Boulder; Estados UnidosFil: Poorman, Megan E.. Hyperfine; Estados UnidosFil: Teixeira, Rui P.. Hyperfine; Estados UnidosFil: Grissom, William A.. Vanderbilt University; Estados UnidosFil: Nayak, Krishna S.. University of Southern California; Estados UnidosFil: Rosen, Matthew S.. Harvard University; Estados UnidosFil: Webb, Andrew G.. Leiden University. Leiden University Medical Center.; Países BajosFil: Greenbaum, Steven G.. City University Of New York. Hunter College; Estados UnidosFil: Witherspoon, Velencia J.. University of Tulane; Estados UnidosFil: Keenan, Kathryn E.. National Institute Of Standards And Technology; Estados UnidosJohn Wiley & Sons Ltd2024-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/266380Jordanova, Kalina V.; Fraenza, Carla Cecilia; Martin, Michele N.; Tian, Ye; Shen, Sheng; et al.; Paramagnetic salt and agarose recipes for phantoms with desired T1 and T2 values for low‐field MRI; John Wiley & Sons Ltd; Nmr In Biomedicine; 38; 1; 11-2024; 1-120952-3480CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/nbm.5281info:eu-repo/semantics/altIdentifier/doi/10.1002/nbm.5281info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:27:35Zoai:ri.conicet.gov.ar:11336/266380instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:27:35.761CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Paramagnetic salt and agarose recipes for phantoms with desired T1 and T2 values for low‐field MRI |
| title |
Paramagnetic salt and agarose recipes for phantoms with desired T1 and T2 values for low‐field MRI |
| spellingShingle |
Paramagnetic salt and agarose recipes for phantoms with desired T1 and T2 values for low‐field MRI Jordanova, Kalina V. LOW-FIELD NEUROLOGICAL PHANTOMS QUANTITATIVE RELAXATION |
| title_short |
Paramagnetic salt and agarose recipes for phantoms with desired T1 and T2 values for low‐field MRI |
| title_full |
Paramagnetic salt and agarose recipes for phantoms with desired T1 and T2 values for low‐field MRI |
| title_fullStr |
Paramagnetic salt and agarose recipes for phantoms with desired T1 and T2 values for low‐field MRI |
| title_full_unstemmed |
Paramagnetic salt and agarose recipes for phantoms with desired T1 and T2 values for low‐field MRI |
| title_sort |
Paramagnetic salt and agarose recipes for phantoms with desired T1 and T2 values for low‐field MRI |
| dc.creator.none.fl_str_mv |
Jordanova, Kalina V. Fraenza, Carla Cecilia Martin, Michele N. Tian, Ye Shen, Sheng Vaughn, Christopher E. Walsh, Kevin J. Walsh, Casey Sappo, Charlotte R. Ogier, Stephen E. Poorman, Megan E. Teixeira, Rui P. Grissom, William A. Nayak, Krishna S. Rosen, Matthew S. Webb, Andrew G. Greenbaum, Steven G. Witherspoon, Velencia J. Keenan, Kathryn E. |
| author |
Jordanova, Kalina V. |
| author_facet |
Jordanova, Kalina V. Fraenza, Carla Cecilia Martin, Michele N. Tian, Ye Shen, Sheng Vaughn, Christopher E. Walsh, Kevin J. Walsh, Casey Sappo, Charlotte R. Ogier, Stephen E. Poorman, Megan E. Teixeira, Rui P. Grissom, William A. Nayak, Krishna S. Rosen, Matthew S. Webb, Andrew G. Greenbaum, Steven G. Witherspoon, Velencia J. Keenan, Kathryn E. |
| author_role |
author |
| author2 |
Fraenza, Carla Cecilia Martin, Michele N. Tian, Ye Shen, Sheng Vaughn, Christopher E. Walsh, Kevin J. Walsh, Casey Sappo, Charlotte R. Ogier, Stephen E. Poorman, Megan E. Teixeira, Rui P. Grissom, William A. Nayak, Krishna S. Rosen, Matthew S. Webb, Andrew G. Greenbaum, Steven G. Witherspoon, Velencia J. Keenan, Kathryn E. |
| author2_role |
author author author author author author author author author author author author author author author author author author |
| dc.subject.none.fl_str_mv |
LOW-FIELD NEUROLOGICAL PHANTOMS QUANTITATIVE RELAXATION |
| topic |
LOW-FIELD NEUROLOGICAL PHANTOMS QUANTITATIVE RELAXATION |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Tissue-mimicking reference phantoms are indispensable for the development andoptimization of magnetic resonance (MR) measurement sequences. Phantoms havegreatest utility when they mimic the MR signals arising from tissue physiology;however, many of the properties underlying these signals, including tissue relaxationcharacteristics, can vary as a function of magnetic field strength. There hasbeen renewed interest in magnetic resonance imaging (MRI) at field strengths lessthan 1 T, and phantoms developed for higher field strengths may not be physiologicallyrelevant at these lower fields. This work focuses on developing materials with specific relaxation properties for lower magnetic field strengths. Specifically, we developed recipes that can be used to create synthetic samples for target nuclear magnetic resonance relaxation values for fields between 0.0065 and 0.55 T. T1 and T2 mixing models for agarose-based gels doped with a paramagnetic salt (one of CuSO4, GdCl3, MnCl2, or NiCl2) were created using relaxation measurements of synthetic gel samples at 0.0065, 0.064, and 0.55 T. Measurements were evaluated for variability with respect to measurement repeatability and changing synthesis protocolor laboratory temperature. The mixing models were used to identify formulations ofagarose and salt composition to approximately mimic the relaxation times of five neurologicaltissues (blood, cerebrospinal fluid, fat, gray matter, and white matter) at0.0065, 0.0475, 0.05, 0.064, and 0.55 T. These mimic sample formulations were measuredat each field strength. Of these samples, the GdCl3 and NiCl2 measurementswere closest to the target tissue relaxation times. The GdCl3 or NiCl2 mixing modelrecipes are recommended for creating target relaxation samples below 0.55 T. Thiswork can help development of MRI methods and applications for low-field systemsand applications. Fil: Jordanova, Kalina V.. National Institute of Standards and Technology; Estados Unidos Fil: Fraenza, Carla Cecilia. City University Of New York. Hunter College; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Martin, Michele N.. National Institute of Standards and Technology; Estados Unidos Fil: Tian, Ye. University of Southern California; Estados Unidos Fil: Shen, Sheng. Massachusetts General Hospital And Harvard Medical Scho; Estados Unidos Fil: Vaughn, Christopher E.. Vanderbilt University; Estados Unidos Fil: Walsh, Kevin J.. Ohio State University; Estados Unidos Fil: Walsh, Casey. City University Of New York. Hunter College; Estados Unidos Fil: Sappo, Charlotte R.. Vanderbilt University; Estados Unidos Fil: Ogier, Stephen E.. National Institute Of Standards And Technology; Estados Unidos. State University of Colorado at Boulder; Estados Unidos Fil: Poorman, Megan E.. Hyperfine; Estados Unidos Fil: Teixeira, Rui P.. Hyperfine; Estados Unidos Fil: Grissom, William A.. Vanderbilt University; Estados Unidos Fil: Nayak, Krishna S.. University of Southern California; Estados Unidos Fil: Rosen, Matthew S.. Harvard University; Estados Unidos Fil: Webb, Andrew G.. Leiden University. Leiden University Medical Center.; Países Bajos Fil: Greenbaum, Steven G.. City University Of New York. Hunter College; Estados Unidos Fil: Witherspoon, Velencia J.. University of Tulane; Estados Unidos Fil: Keenan, Kathryn E.. National Institute Of Standards And Technology; Estados Unidos |
| description |
Tissue-mimicking reference phantoms are indispensable for the development andoptimization of magnetic resonance (MR) measurement sequences. Phantoms havegreatest utility when they mimic the MR signals arising from tissue physiology;however, many of the properties underlying these signals, including tissue relaxationcharacteristics, can vary as a function of magnetic field strength. There hasbeen renewed interest in magnetic resonance imaging (MRI) at field strengths lessthan 1 T, and phantoms developed for higher field strengths may not be physiologicallyrelevant at these lower fields. This work focuses on developing materials with specific relaxation properties for lower magnetic field strengths. Specifically, we developed recipes that can be used to create synthetic samples for target nuclear magnetic resonance relaxation values for fields between 0.0065 and 0.55 T. T1 and T2 mixing models for agarose-based gels doped with a paramagnetic salt (one of CuSO4, GdCl3, MnCl2, or NiCl2) were created using relaxation measurements of synthetic gel samples at 0.0065, 0.064, and 0.55 T. Measurements were evaluated for variability with respect to measurement repeatability and changing synthesis protocolor laboratory temperature. The mixing models were used to identify formulations ofagarose and salt composition to approximately mimic the relaxation times of five neurologicaltissues (blood, cerebrospinal fluid, fat, gray matter, and white matter) at0.0065, 0.0475, 0.05, 0.064, and 0.55 T. These mimic sample formulations were measuredat each field strength. Of these samples, the GdCl3 and NiCl2 measurementswere closest to the target tissue relaxation times. The GdCl3 or NiCl2 mixing modelrecipes are recommended for creating target relaxation samples below 0.55 T. Thiswork can help development of MRI methods and applications for low-field systemsand applications. |
| publishDate |
2024 |
| dc.date.none.fl_str_mv |
2024-11 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/266380 Jordanova, Kalina V.; Fraenza, Carla Cecilia; Martin, Michele N.; Tian, Ye; Shen, Sheng; et al.; Paramagnetic salt and agarose recipes for phantoms with desired T1 and T2 values for low‐field MRI; John Wiley & Sons Ltd; Nmr In Biomedicine; 38; 1; 11-2024; 1-12 0952-3480 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/266380 |
| identifier_str_mv |
Jordanova, Kalina V.; Fraenza, Carla Cecilia; Martin, Michele N.; Tian, Ye; Shen, Sheng; et al.; Paramagnetic salt and agarose recipes for phantoms with desired T1 and T2 values for low‐field MRI; John Wiley & Sons Ltd; Nmr In Biomedicine; 38; 1; 11-2024; 1-12 0952-3480 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/nbm.5281 info:eu-repo/semantics/altIdentifier/doi/10.1002/nbm.5281 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
John Wiley & Sons Ltd |
| publisher.none.fl_str_mv |
John Wiley & Sons Ltd |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846781845706899456 |
| score |
12.982451 |