Two new weak constraint qualifications and applications

Autores
Andreani, Roberto; Haeser, Gabriel; Schuverdt, María Laura; Silva, Paulo J. S.
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We present two new constraint qualifications (CQs) that are weaker than the recently introduced relaxed constant positive linear dependence (RCPLD) CQ. RCPLD is based on the assumption that many subsets of the gradients of the active constraints preserve positive linear dependence locally. A major open question was to identify the exact set of gradients whose properties had to be preserved locally and that would still work as a CQ. This is done in the first new CQ, which we call the constant rank of the subspace component (CRSC) CQ. This new CQ also preserves many of the good properties of RCPLD, such as local stability and the validity of an error bound. We also introduce an even weaker CQ, called the constant positive generator (CPG), which can replace RCPLD in the analysis of the global convergence of algorithms. We close this work by extending convergence results of algorithms belonging to all the main classes of nonlinear optimization methods: sequential quadratic programming, augmented Lagrangians, interior point algorithms, and inexact restoration.
Fil: Andreani, Roberto. Universidade Estadual de Campinas; Brasil
Fil: Haeser, Gabriel. Universidade de Sao Paulo; Brasil
Fil: Schuverdt, María Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina
Fil: Silva, Paulo J. S.. Universidade de Sao Paulo; Brasil
Materia
ALGORITHMIC CONVERGENCE
CONSTRAINT QUALIFICATIONS
ERROR BOUND
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/80535

id CONICETDig_687520e5e91cfa3a567be99f635ea1a9
oai_identifier_str oai:ri.conicet.gov.ar:11336/80535
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Two new weak constraint qualifications and applicationsAndreani, RobertoHaeser, GabrielSchuverdt, María LauraSilva, Paulo J. S.ALGORITHMIC CONVERGENCECONSTRAINT QUALIFICATIONSERROR BOUNDhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We present two new constraint qualifications (CQs) that are weaker than the recently introduced relaxed constant positive linear dependence (RCPLD) CQ. RCPLD is based on the assumption that many subsets of the gradients of the active constraints preserve positive linear dependence locally. A major open question was to identify the exact set of gradients whose properties had to be preserved locally and that would still work as a CQ. This is done in the first new CQ, which we call the constant rank of the subspace component (CRSC) CQ. This new CQ also preserves many of the good properties of RCPLD, such as local stability and the validity of an error bound. We also introduce an even weaker CQ, called the constant positive generator (CPG), which can replace RCPLD in the analysis of the global convergence of algorithms. We close this work by extending convergence results of algorithms belonging to all the main classes of nonlinear optimization methods: sequential quadratic programming, augmented Lagrangians, interior point algorithms, and inexact restoration.Fil: Andreani, Roberto. Universidade Estadual de Campinas; BrasilFil: Haeser, Gabriel. Universidade de Sao Paulo; BrasilFil: Schuverdt, María Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; ArgentinaFil: Silva, Paulo J. S.. Universidade de Sao Paulo; BrasilSociety for Industrial and Applied Mathematics2012-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/80535Andreani, Roberto; Haeser, Gabriel; Schuverdt, María Laura; Silva, Paulo J. S.; Two new weak constraint qualifications and applications; Society for Industrial and Applied Mathematics; Siam Journal On Optimization; 22; 3; 1-2012; 1109-11351052-62341095-7189CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1137/110843939info:eu-repo/semantics/altIdentifier/url/https://epubs.siam.org/doi/10.1137/110843939info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:56:22Zoai:ri.conicet.gov.ar:11336/80535instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:56:23.022CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Two new weak constraint qualifications and applications
title Two new weak constraint qualifications and applications
spellingShingle Two new weak constraint qualifications and applications
Andreani, Roberto
ALGORITHMIC CONVERGENCE
CONSTRAINT QUALIFICATIONS
ERROR BOUND
title_short Two new weak constraint qualifications and applications
title_full Two new weak constraint qualifications and applications
title_fullStr Two new weak constraint qualifications and applications
title_full_unstemmed Two new weak constraint qualifications and applications
title_sort Two new weak constraint qualifications and applications
dc.creator.none.fl_str_mv Andreani, Roberto
Haeser, Gabriel
Schuverdt, María Laura
Silva, Paulo J. S.
author Andreani, Roberto
author_facet Andreani, Roberto
Haeser, Gabriel
Schuverdt, María Laura
Silva, Paulo J. S.
author_role author
author2 Haeser, Gabriel
Schuverdt, María Laura
Silva, Paulo J. S.
author2_role author
author
author
dc.subject.none.fl_str_mv ALGORITHMIC CONVERGENCE
CONSTRAINT QUALIFICATIONS
ERROR BOUND
topic ALGORITHMIC CONVERGENCE
CONSTRAINT QUALIFICATIONS
ERROR BOUND
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We present two new constraint qualifications (CQs) that are weaker than the recently introduced relaxed constant positive linear dependence (RCPLD) CQ. RCPLD is based on the assumption that many subsets of the gradients of the active constraints preserve positive linear dependence locally. A major open question was to identify the exact set of gradients whose properties had to be preserved locally and that would still work as a CQ. This is done in the first new CQ, which we call the constant rank of the subspace component (CRSC) CQ. This new CQ also preserves many of the good properties of RCPLD, such as local stability and the validity of an error bound. We also introduce an even weaker CQ, called the constant positive generator (CPG), which can replace RCPLD in the analysis of the global convergence of algorithms. We close this work by extending convergence results of algorithms belonging to all the main classes of nonlinear optimization methods: sequential quadratic programming, augmented Lagrangians, interior point algorithms, and inexact restoration.
Fil: Andreani, Roberto. Universidade Estadual de Campinas; Brasil
Fil: Haeser, Gabriel. Universidade de Sao Paulo; Brasil
Fil: Schuverdt, María Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina
Fil: Silva, Paulo J. S.. Universidade de Sao Paulo; Brasil
description We present two new constraint qualifications (CQs) that are weaker than the recently introduced relaxed constant positive linear dependence (RCPLD) CQ. RCPLD is based on the assumption that many subsets of the gradients of the active constraints preserve positive linear dependence locally. A major open question was to identify the exact set of gradients whose properties had to be preserved locally and that would still work as a CQ. This is done in the first new CQ, which we call the constant rank of the subspace component (CRSC) CQ. This new CQ also preserves many of the good properties of RCPLD, such as local stability and the validity of an error bound. We also introduce an even weaker CQ, called the constant positive generator (CPG), which can replace RCPLD in the analysis of the global convergence of algorithms. We close this work by extending convergence results of algorithms belonging to all the main classes of nonlinear optimization methods: sequential quadratic programming, augmented Lagrangians, interior point algorithms, and inexact restoration.
publishDate 2012
dc.date.none.fl_str_mv 2012-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/80535
Andreani, Roberto; Haeser, Gabriel; Schuverdt, María Laura; Silva, Paulo J. S.; Two new weak constraint qualifications and applications; Society for Industrial and Applied Mathematics; Siam Journal On Optimization; 22; 3; 1-2012; 1109-1135
1052-6234
1095-7189
CONICET Digital
CONICET
url http://hdl.handle.net/11336/80535
identifier_str_mv Andreani, Roberto; Haeser, Gabriel; Schuverdt, María Laura; Silva, Paulo J. S.; Two new weak constraint qualifications and applications; Society for Industrial and Applied Mathematics; Siam Journal On Optimization; 22; 3; 1-2012; 1109-1135
1052-6234
1095-7189
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1137/110843939
info:eu-repo/semantics/altIdentifier/url/https://epubs.siam.org/doi/10.1137/110843939
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Society for Industrial and Applied Mathematics
publisher.none.fl_str_mv Society for Industrial and Applied Mathematics
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083099321958400
score 13.22299