Two new weak constraint qualifications and applications
- Autores
- Andreani, Roberto; Haeser, Gabriel; Schuverdt, María Laura; Silva, Paulo J. S.
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We present two new constraint qualifications (CQs) that are weaker than the recently introduced relaxed constant positive linear dependence (RCPLD) CQ. RCPLD is based on the assumption that many subsets of the gradients of the active constraints preserve positive linear dependence locally. A major open question was to identify the exact set of gradients whose properties had to be preserved locally and that would still work as a CQ. This is done in the first new CQ, which we call the constant rank of the subspace component (CRSC) CQ. This new CQ also preserves many of the good properties of RCPLD, such as local stability and the validity of an error bound. We also introduce an even weaker CQ, called the constant positive generator (CPG), which can replace RCPLD in the analysis of the global convergence of algorithms. We close this work by extending convergence results of algorithms belonging to all the main classes of nonlinear optimization methods: sequential quadratic programming, augmented Lagrangians, interior point algorithms, and inexact restoration.
Fil: Andreani, Roberto. Universidade Estadual de Campinas; Brasil
Fil: Haeser, Gabriel. Universidade de Sao Paulo; Brasil
Fil: Schuverdt, María Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina
Fil: Silva, Paulo J. S.. Universidade de Sao Paulo; Brasil - Materia
-
ALGORITHMIC CONVERGENCE
CONSTRAINT QUALIFICATIONS
ERROR BOUND - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/80535
Ver los metadatos del registro completo
id |
CONICETDig_687520e5e91cfa3a567be99f635ea1a9 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/80535 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Two new weak constraint qualifications and applicationsAndreani, RobertoHaeser, GabrielSchuverdt, María LauraSilva, Paulo J. S.ALGORITHMIC CONVERGENCECONSTRAINT QUALIFICATIONSERROR BOUNDhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We present two new constraint qualifications (CQs) that are weaker than the recently introduced relaxed constant positive linear dependence (RCPLD) CQ. RCPLD is based on the assumption that many subsets of the gradients of the active constraints preserve positive linear dependence locally. A major open question was to identify the exact set of gradients whose properties had to be preserved locally and that would still work as a CQ. This is done in the first new CQ, which we call the constant rank of the subspace component (CRSC) CQ. This new CQ also preserves many of the good properties of RCPLD, such as local stability and the validity of an error bound. We also introduce an even weaker CQ, called the constant positive generator (CPG), which can replace RCPLD in the analysis of the global convergence of algorithms. We close this work by extending convergence results of algorithms belonging to all the main classes of nonlinear optimization methods: sequential quadratic programming, augmented Lagrangians, interior point algorithms, and inexact restoration.Fil: Andreani, Roberto. Universidade Estadual de Campinas; BrasilFil: Haeser, Gabriel. Universidade de Sao Paulo; BrasilFil: Schuverdt, María Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; ArgentinaFil: Silva, Paulo J. S.. Universidade de Sao Paulo; BrasilSociety for Industrial and Applied Mathematics2012-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/80535Andreani, Roberto; Haeser, Gabriel; Schuverdt, María Laura; Silva, Paulo J. S.; Two new weak constraint qualifications and applications; Society for Industrial and Applied Mathematics; Siam Journal On Optimization; 22; 3; 1-2012; 1109-11351052-62341095-7189CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1137/110843939info:eu-repo/semantics/altIdentifier/url/https://epubs.siam.org/doi/10.1137/110843939info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:56:22Zoai:ri.conicet.gov.ar:11336/80535instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:56:23.022CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Two new weak constraint qualifications and applications |
title |
Two new weak constraint qualifications and applications |
spellingShingle |
Two new weak constraint qualifications and applications Andreani, Roberto ALGORITHMIC CONVERGENCE CONSTRAINT QUALIFICATIONS ERROR BOUND |
title_short |
Two new weak constraint qualifications and applications |
title_full |
Two new weak constraint qualifications and applications |
title_fullStr |
Two new weak constraint qualifications and applications |
title_full_unstemmed |
Two new weak constraint qualifications and applications |
title_sort |
Two new weak constraint qualifications and applications |
dc.creator.none.fl_str_mv |
Andreani, Roberto Haeser, Gabriel Schuverdt, María Laura Silva, Paulo J. S. |
author |
Andreani, Roberto |
author_facet |
Andreani, Roberto Haeser, Gabriel Schuverdt, María Laura Silva, Paulo J. S. |
author_role |
author |
author2 |
Haeser, Gabriel Schuverdt, María Laura Silva, Paulo J. S. |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
ALGORITHMIC CONVERGENCE CONSTRAINT QUALIFICATIONS ERROR BOUND |
topic |
ALGORITHMIC CONVERGENCE CONSTRAINT QUALIFICATIONS ERROR BOUND |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We present two new constraint qualifications (CQs) that are weaker than the recently introduced relaxed constant positive linear dependence (RCPLD) CQ. RCPLD is based on the assumption that many subsets of the gradients of the active constraints preserve positive linear dependence locally. A major open question was to identify the exact set of gradients whose properties had to be preserved locally and that would still work as a CQ. This is done in the first new CQ, which we call the constant rank of the subspace component (CRSC) CQ. This new CQ also preserves many of the good properties of RCPLD, such as local stability and the validity of an error bound. We also introduce an even weaker CQ, called the constant positive generator (CPG), which can replace RCPLD in the analysis of the global convergence of algorithms. We close this work by extending convergence results of algorithms belonging to all the main classes of nonlinear optimization methods: sequential quadratic programming, augmented Lagrangians, interior point algorithms, and inexact restoration. Fil: Andreani, Roberto. Universidade Estadual de Campinas; Brasil Fil: Haeser, Gabriel. Universidade de Sao Paulo; Brasil Fil: Schuverdt, María Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina Fil: Silva, Paulo J. S.. Universidade de Sao Paulo; Brasil |
description |
We present two new constraint qualifications (CQs) that are weaker than the recently introduced relaxed constant positive linear dependence (RCPLD) CQ. RCPLD is based on the assumption that many subsets of the gradients of the active constraints preserve positive linear dependence locally. A major open question was to identify the exact set of gradients whose properties had to be preserved locally and that would still work as a CQ. This is done in the first new CQ, which we call the constant rank of the subspace component (CRSC) CQ. This new CQ also preserves many of the good properties of RCPLD, such as local stability and the validity of an error bound. We also introduce an even weaker CQ, called the constant positive generator (CPG), which can replace RCPLD in the analysis of the global convergence of algorithms. We close this work by extending convergence results of algorithms belonging to all the main classes of nonlinear optimization methods: sequential quadratic programming, augmented Lagrangians, interior point algorithms, and inexact restoration. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/80535 Andreani, Roberto; Haeser, Gabriel; Schuverdt, María Laura; Silva, Paulo J. S.; Two new weak constraint qualifications and applications; Society for Industrial and Applied Mathematics; Siam Journal On Optimization; 22; 3; 1-2012; 1109-1135 1052-6234 1095-7189 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/80535 |
identifier_str_mv |
Andreani, Roberto; Haeser, Gabriel; Schuverdt, María Laura; Silva, Paulo J. S.; Two new weak constraint qualifications and applications; Society for Industrial and Applied Mathematics; Siam Journal On Optimization; 22; 3; 1-2012; 1109-1135 1052-6234 1095-7189 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1137/110843939 info:eu-repo/semantics/altIdentifier/url/https://epubs.siam.org/doi/10.1137/110843939 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Society for Industrial and Applied Mathematics |
publisher.none.fl_str_mv |
Society for Industrial and Applied Mathematics |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083099321958400 |
score |
13.22299 |