Insights into Xanthomonas axonopodis pv. citri biofilm through proteomics

Autores
Zimaro, Tamara; Thomas; Ludivine; Marondedze, Claudius; Garavaglia, Betiana Soledad; Gehring, Chris; Ottado, Jorgelina; Gottig Schor, Natalia
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Background: Xanthomonas axonopodis pv. citri (X. a. pv. citri) causes citrus canker that can result in defoliation and premature fruit drop with significant production losses worldwide. Biofilm formation is an important process in bacterial pathogens and several lines of evidence suggest that in X. a. pv. citri this process is a equirement to achieve maximal virulence since it has a major role in host interactions. In this study, proteomics was used to gain further insights into the functions of biofilms. Results: In order to identify differentially expressed proteins, a comparative proteomic study using 2D difference gel electrophoresis was carried out on X. a. pv. citri mature biofilm and planktonic cells. The biofilm proteome showed major variations in the composition of outer membrane proteins and receptor or transport proteins. Among them, several porins and TonB-dependent receptor were differentially regulated in the biofilm compared to the planktonic cells, indicating that these proteins may serve in maintaining specific membrane-associated functions including signaling and cellular homeostasis. In biofilms, UDP-glucose dehydrogenase with a major role in exopolysaccharide production and the non-fimbrial adhesin YapH involved in adherence were over-expressed, while a polynucleotide phosphorylase that was demonstrated to negatively control biofilm formation in E. coli was down-regulated. In addition, several proteins involved in protein synthesis, folding and stabilization were up-regulated in biofilms. Interestingly, some proteins related to energy production, such as ATP-synthase were down-regulated in biofilms. Moreover, a number of enzymes of the tricarboxylic acid cycle were differentially expressed. In addition, X. a. pv. citri biofilms also showed down-regulation of several antioxidant enzymes. The respective gene expression patterns of several identified proteins in both X. a. pv. citri mature biofilm and planktonic cells were evaluated by quantitative real-time PCR and shown to consistently correlate with those deduced from the proteomic study. Conclusions: Differentially expressed proteins are enriched in functional categories. Firstly, proteins that are downregulated in X. a. pv. citri biofilms are enriched for the gene ontology (GO) terms ‘generation of precursor metabolites and energy’ and secondly, the biofilm proteome mainly changes in ‘outer membrane and receptor or transport’. We argue that the differentially expressed proteins have a critical role in maintaining a functional external structure as well as enabling appropriate flow of nutrients and signals specific to the biofilm lifestyle.
Fil: Zimaro, Tamara. Consejo Nacional de Investigaciones Científicas y Técnicas Centro Científico Tecnológico - CONICET -Rosario. Instituto de Biologia Molecular y Celular de Rosario; Argentina;
Fil: Thomas; Ludivine. Division of Biological and Environmental Sciences and Engineering. King Abdullah University of Science and Technology; Arabia Saudita;
Fil: Marondedze, Claudius. Division of Biological and Environmental Sciences and Engineering. King Abdullah University of Science and Technology; Arabia Saudita;
Fil: Garavaglia, Betiana Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas Centro Científico Tecnológico - CONICET -Rosario. Instituto de Biologia Molecular y Celular de Rosario; Argentina;
Fil: Gehring, Chris. Division of Biological and Environmental Sciences and Engineering. King Abdullah University of Science and Technology; Arabia Saudita;
Fil: Ottado, Jorgelina. Consejo Nacional de Investigaciones Científicas y Técnicas Centro Científico Tecnológico - CONICET -Rosario. Instituto de Biologia Molecular y Celular de Rosario; Argentina;
Fil: Gottig Schor, Natalia. Consejo Nacional de Investigaciones Científicas y Técnicas Centro Científico Tecnológico - CONICET -Rosario. Instituto de Biologia Molecular y Celular de Rosario; Argentina;
Materia
CITRUS
CANKER
BIOFILM
PROTEOMICS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/597

id CONICETDig_68514bd2bf192dd8a5bbe37e1db0d588
oai_identifier_str oai:ri.conicet.gov.ar:11336/597
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Insights into Xanthomonas axonopodis pv. citri biofilm through proteomicsZimaro, TamaraThomas; LudivineMarondedze, ClaudiusGaravaglia, Betiana SoledadGehring, ChrisOttado, JorgelinaGottig Schor, NataliaCITRUSCANKERBIOFILMPROTEOMICShttps://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.6Background: Xanthomonas axonopodis pv. citri (X. a. pv. citri) causes citrus canker that can result in defoliation and premature fruit drop with significant production losses worldwide. Biofilm formation is an important process in bacterial pathogens and several lines of evidence suggest that in X. a. pv. citri this process is a equirement to achieve maximal virulence since it has a major role in host interactions. In this study, proteomics was used to gain further insights into the functions of biofilms. Results: In order to identify differentially expressed proteins, a comparative proteomic study using 2D difference gel electrophoresis was carried out on X. a. pv. citri mature biofilm and planktonic cells. The biofilm proteome showed major variations in the composition of outer membrane proteins and receptor or transport proteins. Among them, several porins and TonB-dependent receptor were differentially regulated in the biofilm compared to the planktonic cells, indicating that these proteins may serve in maintaining specific membrane-associated functions including signaling and cellular homeostasis. In biofilms, UDP-glucose dehydrogenase with a major role in exopolysaccharide production and the non-fimbrial adhesin YapH involved in adherence were over-expressed, while a polynucleotide phosphorylase that was demonstrated to negatively control biofilm formation in E. coli was down-regulated. In addition, several proteins involved in protein synthesis, folding and stabilization were up-regulated in biofilms. Interestingly, some proteins related to energy production, such as ATP-synthase were down-regulated in biofilms. Moreover, a number of enzymes of the tricarboxylic acid cycle were differentially expressed. In addition, X. a. pv. citri biofilms also showed down-regulation of several antioxidant enzymes. The respective gene expression patterns of several identified proteins in both X. a. pv. citri mature biofilm and planktonic cells were evaluated by quantitative real-time PCR and shown to consistently correlate with those deduced from the proteomic study. Conclusions: Differentially expressed proteins are enriched in functional categories. Firstly, proteins that are downregulated in X. a. pv. citri biofilms are enriched for the gene ontology (GO) terms ‘generation of precursor metabolites and energy’ and secondly, the biofilm proteome mainly changes in ‘outer membrane and receptor or transport’. We argue that the differentially expressed proteins have a critical role in maintaining a functional external structure as well as enabling appropriate flow of nutrients and signals specific to the biofilm lifestyle.Fil: Zimaro, Tamara. Consejo Nacional de Investigaciones Científicas y Técnicas Centro Científico Tecnológico - CONICET -Rosario. Instituto de Biologia Molecular y Celular de Rosario; Argentina;Fil: Thomas; Ludivine. Division of Biological and Environmental Sciences and Engineering. King Abdullah University of Science and Technology; Arabia Saudita;Fil: Marondedze, Claudius. Division of Biological and Environmental Sciences and Engineering. King Abdullah University of Science and Technology; Arabia Saudita;Fil: Garavaglia, Betiana Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas Centro Científico Tecnológico - CONICET -Rosario. Instituto de Biologia Molecular y Celular de Rosario; Argentina;Fil: Gehring, Chris. Division of Biological and Environmental Sciences and Engineering. King Abdullah University of Science and Technology; Arabia Saudita;Fil: Ottado, Jorgelina. Consejo Nacional de Investigaciones Científicas y Técnicas Centro Científico Tecnológico - CONICET -Rosario. Instituto de Biologia Molecular y Celular de Rosario; Argentina;Fil: Gottig Schor, Natalia. Consejo Nacional de Investigaciones Científicas y Técnicas Centro Científico Tecnológico - CONICET -Rosario. Instituto de Biologia Molecular y Celular de Rosario; Argentina;Biomed Central Ltd2013-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/597Zimaro, Tamara; Thomas; Ludivine; Marondedze, Claudius; Garavaglia, Betiana Soledad; Gehring, Chris; Ottado, Jorgelina; Gottig Schor, Natalia; Insights into Xanthomonas axonopodis pv. citri biofilm through proteomics; Biomed Central Ltd; Bmc Microbiology; 13; 186; 8-2013; 186-200;1471-2180enginfo:eu-repo/semantics/altIdentifier/url/http://www.biomedcentral.com/1471-2180/13/186info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:01:40Zoai:ri.conicet.gov.ar:11336/597instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:01:40.578CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Insights into Xanthomonas axonopodis pv. citri biofilm through proteomics
title Insights into Xanthomonas axonopodis pv. citri biofilm through proteomics
spellingShingle Insights into Xanthomonas axonopodis pv. citri biofilm through proteomics
Zimaro, Tamara
CITRUS
CANKER
BIOFILM
PROTEOMICS
title_short Insights into Xanthomonas axonopodis pv. citri biofilm through proteomics
title_full Insights into Xanthomonas axonopodis pv. citri biofilm through proteomics
title_fullStr Insights into Xanthomonas axonopodis pv. citri biofilm through proteomics
title_full_unstemmed Insights into Xanthomonas axonopodis pv. citri biofilm through proteomics
title_sort Insights into Xanthomonas axonopodis pv. citri biofilm through proteomics
dc.creator.none.fl_str_mv Zimaro, Tamara
Thomas; Ludivine
Marondedze, Claudius
Garavaglia, Betiana Soledad
Gehring, Chris
Ottado, Jorgelina
Gottig Schor, Natalia
author Zimaro, Tamara
author_facet Zimaro, Tamara
Thomas; Ludivine
Marondedze, Claudius
Garavaglia, Betiana Soledad
Gehring, Chris
Ottado, Jorgelina
Gottig Schor, Natalia
author_role author
author2 Thomas; Ludivine
Marondedze, Claudius
Garavaglia, Betiana Soledad
Gehring, Chris
Ottado, Jorgelina
Gottig Schor, Natalia
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv CITRUS
CANKER
BIOFILM
PROTEOMICS
topic CITRUS
CANKER
BIOFILM
PROTEOMICS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1
https://purl.org/becyt/ford/1.6
dc.description.none.fl_txt_mv Background: Xanthomonas axonopodis pv. citri (X. a. pv. citri) causes citrus canker that can result in defoliation and premature fruit drop with significant production losses worldwide. Biofilm formation is an important process in bacterial pathogens and several lines of evidence suggest that in X. a. pv. citri this process is a equirement to achieve maximal virulence since it has a major role in host interactions. In this study, proteomics was used to gain further insights into the functions of biofilms. Results: In order to identify differentially expressed proteins, a comparative proteomic study using 2D difference gel electrophoresis was carried out on X. a. pv. citri mature biofilm and planktonic cells. The biofilm proteome showed major variations in the composition of outer membrane proteins and receptor or transport proteins. Among them, several porins and TonB-dependent receptor were differentially regulated in the biofilm compared to the planktonic cells, indicating that these proteins may serve in maintaining specific membrane-associated functions including signaling and cellular homeostasis. In biofilms, UDP-glucose dehydrogenase with a major role in exopolysaccharide production and the non-fimbrial adhesin YapH involved in adherence were over-expressed, while a polynucleotide phosphorylase that was demonstrated to negatively control biofilm formation in E. coli was down-regulated. In addition, several proteins involved in protein synthesis, folding and stabilization were up-regulated in biofilms. Interestingly, some proteins related to energy production, such as ATP-synthase were down-regulated in biofilms. Moreover, a number of enzymes of the tricarboxylic acid cycle were differentially expressed. In addition, X. a. pv. citri biofilms also showed down-regulation of several antioxidant enzymes. The respective gene expression patterns of several identified proteins in both X. a. pv. citri mature biofilm and planktonic cells were evaluated by quantitative real-time PCR and shown to consistently correlate with those deduced from the proteomic study. Conclusions: Differentially expressed proteins are enriched in functional categories. Firstly, proteins that are downregulated in X. a. pv. citri biofilms are enriched for the gene ontology (GO) terms ‘generation of precursor metabolites and energy’ and secondly, the biofilm proteome mainly changes in ‘outer membrane and receptor or transport’. We argue that the differentially expressed proteins have a critical role in maintaining a functional external structure as well as enabling appropriate flow of nutrients and signals specific to the biofilm lifestyle.
Fil: Zimaro, Tamara. Consejo Nacional de Investigaciones Científicas y Técnicas Centro Científico Tecnológico - CONICET -Rosario. Instituto de Biologia Molecular y Celular de Rosario; Argentina;
Fil: Thomas; Ludivine. Division of Biological and Environmental Sciences and Engineering. King Abdullah University of Science and Technology; Arabia Saudita;
Fil: Marondedze, Claudius. Division of Biological and Environmental Sciences and Engineering. King Abdullah University of Science and Technology; Arabia Saudita;
Fil: Garavaglia, Betiana Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas Centro Científico Tecnológico - CONICET -Rosario. Instituto de Biologia Molecular y Celular de Rosario; Argentina;
Fil: Gehring, Chris. Division of Biological and Environmental Sciences and Engineering. King Abdullah University of Science and Technology; Arabia Saudita;
Fil: Ottado, Jorgelina. Consejo Nacional de Investigaciones Científicas y Técnicas Centro Científico Tecnológico - CONICET -Rosario. Instituto de Biologia Molecular y Celular de Rosario; Argentina;
Fil: Gottig Schor, Natalia. Consejo Nacional de Investigaciones Científicas y Técnicas Centro Científico Tecnológico - CONICET -Rosario. Instituto de Biologia Molecular y Celular de Rosario; Argentina;
description Background: Xanthomonas axonopodis pv. citri (X. a. pv. citri) causes citrus canker that can result in defoliation and premature fruit drop with significant production losses worldwide. Biofilm formation is an important process in bacterial pathogens and several lines of evidence suggest that in X. a. pv. citri this process is a equirement to achieve maximal virulence since it has a major role in host interactions. In this study, proteomics was used to gain further insights into the functions of biofilms. Results: In order to identify differentially expressed proteins, a comparative proteomic study using 2D difference gel electrophoresis was carried out on X. a. pv. citri mature biofilm and planktonic cells. The biofilm proteome showed major variations in the composition of outer membrane proteins and receptor or transport proteins. Among them, several porins and TonB-dependent receptor were differentially regulated in the biofilm compared to the planktonic cells, indicating that these proteins may serve in maintaining specific membrane-associated functions including signaling and cellular homeostasis. In biofilms, UDP-glucose dehydrogenase with a major role in exopolysaccharide production and the non-fimbrial adhesin YapH involved in adherence were over-expressed, while a polynucleotide phosphorylase that was demonstrated to negatively control biofilm formation in E. coli was down-regulated. In addition, several proteins involved in protein synthesis, folding and stabilization were up-regulated in biofilms. Interestingly, some proteins related to energy production, such as ATP-synthase were down-regulated in biofilms. Moreover, a number of enzymes of the tricarboxylic acid cycle were differentially expressed. In addition, X. a. pv. citri biofilms also showed down-regulation of several antioxidant enzymes. The respective gene expression patterns of several identified proteins in both X. a. pv. citri mature biofilm and planktonic cells were evaluated by quantitative real-time PCR and shown to consistently correlate with those deduced from the proteomic study. Conclusions: Differentially expressed proteins are enriched in functional categories. Firstly, proteins that are downregulated in X. a. pv. citri biofilms are enriched for the gene ontology (GO) terms ‘generation of precursor metabolites and energy’ and secondly, the biofilm proteome mainly changes in ‘outer membrane and receptor or transport’. We argue that the differentially expressed proteins have a critical role in maintaining a functional external structure as well as enabling appropriate flow of nutrients and signals specific to the biofilm lifestyle.
publishDate 2013
dc.date.none.fl_str_mv 2013-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/597
Zimaro, Tamara; Thomas; Ludivine; Marondedze, Claudius; Garavaglia, Betiana Soledad; Gehring, Chris; Ottado, Jorgelina; Gottig Schor, Natalia; Insights into Xanthomonas axonopodis pv. citri biofilm through proteomics; Biomed Central Ltd; Bmc Microbiology; 13; 186; 8-2013; 186-200;
1471-2180
url http://hdl.handle.net/11336/597
identifier_str_mv Zimaro, Tamara; Thomas; Ludivine; Marondedze, Claudius; Garavaglia, Betiana Soledad; Gehring, Chris; Ottado, Jorgelina; Gottig Schor, Natalia; Insights into Xanthomonas axonopodis pv. citri biofilm through proteomics; Biomed Central Ltd; Bmc Microbiology; 13; 186; 8-2013; 186-200;
1471-2180
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.biomedcentral.com/1471-2180/13/186
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Biomed Central Ltd
publisher.none.fl_str_mv Biomed Central Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613812786823168
score 13.070432