Tsallis' quantum q-fields

Autores
Plastino, Ángel Luis; Rocca, Mario Carlos
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We generalize several well known quantum equations to a Tsallis' q-scenario, and provide a quantum version of some classical fields associated with them in the recent literature. We refer to the q-Schródinger, q-Klein-Gordon, q-Dirac, and q-Proca equations advanced in, respectively, Phys. Rev. Lett. 106, 140601 (2011), EPL 118, 61004 (2017) and references therein. We also introduce here equations corresponding to q-Yang-Mills fields, both in the Abelian and non-Abelian instances. We show how to define the q-quantum field theories corresponding to the above equations, introduce the pertinent actions, and obtain equations of motion via the minimum action principle. These q-fields are meaningful at very high energies (TeV scale) for q = 1.15, high energies (GeV scale) for q = 1.001, and low energies (MeV scale) for q = 1.000001 [Nucl. Phys. A 955 (2016) 16 and references therein]. (See the ALICE experiment at the LHC). Surprisingly enough, these q-fields are simultaneously q-exponential functions of the usual linear fields' logarithms.
Fil: A. Plastino. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina. IFLP, CONICET/UNLP; Argentina; Argentina
Fil: Rocca, Mario Carlos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina. IFLP, CONICET/UNLP; Argentina; Argentina
Materia
CLASSICAL FIELD THEORY
NON-LINEAR KLEIN-GORDON
NON-LINEAR Q-YANG-MILLS AND NON-LINEAR Q-PROCA FIELDS
NON-LINEAR SCHRÖDINGER AND NON-LINEAR Q-DIRAC FIELDS
QUANTUM FIELD THEORY
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/95921

id CONICETDig_681a4cfb529230c20931516588a0fcfb
oai_identifier_str oai:ri.conicet.gov.ar:11336/95921
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Tsallis' quantum q-fieldsPlastino, Ángel LuisRocca, Mario CarlosCLASSICAL FIELD THEORYNON-LINEAR KLEIN-GORDONNON-LINEAR Q-YANG-MILLS AND NON-LINEAR Q-PROCA FIELDSNON-LINEAR SCHRÖDINGER AND NON-LINEAR Q-DIRAC FIELDSQUANTUM FIELD THEORYhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We generalize several well known quantum equations to a Tsallis' q-scenario, and provide a quantum version of some classical fields associated with them in the recent literature. We refer to the q-Schródinger, q-Klein-Gordon, q-Dirac, and q-Proca equations advanced in, respectively, Phys. Rev. Lett. 106, 140601 (2011), EPL 118, 61004 (2017) and references therein. We also introduce here equations corresponding to q-Yang-Mills fields, both in the Abelian and non-Abelian instances. We show how to define the q-quantum field theories corresponding to the above equations, introduce the pertinent actions, and obtain equations of motion via the minimum action principle. These q-fields are meaningful at very high energies (TeV scale) for q = 1.15, high energies (GeV scale) for q = 1.001, and low energies (MeV scale) for q = 1.000001 [Nucl. Phys. A 955 (2016) 16 and references therein]. (See the ALICE experiment at the LHC). Surprisingly enough, these q-fields are simultaneously q-exponential functions of the usual linear fields' logarithms.Fil: A. Plastino. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina. IFLP, CONICET/UNLP; Argentina; ArgentinaFil: Rocca, Mario Carlos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina. IFLP, CONICET/UNLP; Argentina; ArgentinaIOP Publishing2018-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/95921Plastino, Ángel Luis; Rocca, Mario Carlos; Tsallis' quantum q-fields; IOP Publishing; Chinese Physics C; 42; 5; 5-2018; 53102-531051674-1137CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1674-1137/42/5/053102info:eu-repo/semantics/altIdentifier/doi/10.1088/1674-1137/42/5/053102info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T11:41:45Zoai:ri.conicet.gov.ar:11336/95921instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 11:41:45.596CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Tsallis' quantum q-fields
title Tsallis' quantum q-fields
spellingShingle Tsallis' quantum q-fields
Plastino, Ángel Luis
CLASSICAL FIELD THEORY
NON-LINEAR KLEIN-GORDON
NON-LINEAR Q-YANG-MILLS AND NON-LINEAR Q-PROCA FIELDS
NON-LINEAR SCHRÖDINGER AND NON-LINEAR Q-DIRAC FIELDS
QUANTUM FIELD THEORY
title_short Tsallis' quantum q-fields
title_full Tsallis' quantum q-fields
title_fullStr Tsallis' quantum q-fields
title_full_unstemmed Tsallis' quantum q-fields
title_sort Tsallis' quantum q-fields
dc.creator.none.fl_str_mv Plastino, Ángel Luis
Rocca, Mario Carlos
author Plastino, Ángel Luis
author_facet Plastino, Ángel Luis
Rocca, Mario Carlos
author_role author
author2 Rocca, Mario Carlos
author2_role author
dc.subject.none.fl_str_mv CLASSICAL FIELD THEORY
NON-LINEAR KLEIN-GORDON
NON-LINEAR Q-YANG-MILLS AND NON-LINEAR Q-PROCA FIELDS
NON-LINEAR SCHRÖDINGER AND NON-LINEAR Q-DIRAC FIELDS
QUANTUM FIELD THEORY
topic CLASSICAL FIELD THEORY
NON-LINEAR KLEIN-GORDON
NON-LINEAR Q-YANG-MILLS AND NON-LINEAR Q-PROCA FIELDS
NON-LINEAR SCHRÖDINGER AND NON-LINEAR Q-DIRAC FIELDS
QUANTUM FIELD THEORY
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We generalize several well known quantum equations to a Tsallis' q-scenario, and provide a quantum version of some classical fields associated with them in the recent literature. We refer to the q-Schródinger, q-Klein-Gordon, q-Dirac, and q-Proca equations advanced in, respectively, Phys. Rev. Lett. 106, 140601 (2011), EPL 118, 61004 (2017) and references therein. We also introduce here equations corresponding to q-Yang-Mills fields, both in the Abelian and non-Abelian instances. We show how to define the q-quantum field theories corresponding to the above equations, introduce the pertinent actions, and obtain equations of motion via the minimum action principle. These q-fields are meaningful at very high energies (TeV scale) for q = 1.15, high energies (GeV scale) for q = 1.001, and low energies (MeV scale) for q = 1.000001 [Nucl. Phys. A 955 (2016) 16 and references therein]. (See the ALICE experiment at the LHC). Surprisingly enough, these q-fields are simultaneously q-exponential functions of the usual linear fields' logarithms.
Fil: A. Plastino. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina. IFLP, CONICET/UNLP; Argentina; Argentina
Fil: Rocca, Mario Carlos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina. IFLP, CONICET/UNLP; Argentina; Argentina
description We generalize several well known quantum equations to a Tsallis' q-scenario, and provide a quantum version of some classical fields associated with them in the recent literature. We refer to the q-Schródinger, q-Klein-Gordon, q-Dirac, and q-Proca equations advanced in, respectively, Phys. Rev. Lett. 106, 140601 (2011), EPL 118, 61004 (2017) and references therein. We also introduce here equations corresponding to q-Yang-Mills fields, both in the Abelian and non-Abelian instances. We show how to define the q-quantum field theories corresponding to the above equations, introduce the pertinent actions, and obtain equations of motion via the minimum action principle. These q-fields are meaningful at very high energies (TeV scale) for q = 1.15, high energies (GeV scale) for q = 1.001, and low energies (MeV scale) for q = 1.000001 [Nucl. Phys. A 955 (2016) 16 and references therein]. (See the ALICE experiment at the LHC). Surprisingly enough, these q-fields are simultaneously q-exponential functions of the usual linear fields' logarithms.
publishDate 2018
dc.date.none.fl_str_mv 2018-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/95921
Plastino, Ángel Luis; Rocca, Mario Carlos; Tsallis' quantum q-fields; IOP Publishing; Chinese Physics C; 42; 5; 5-2018; 53102-53105
1674-1137
CONICET Digital
CONICET
url http://hdl.handle.net/11336/95921
identifier_str_mv Plastino, Ángel Luis; Rocca, Mario Carlos; Tsallis' quantum q-fields; IOP Publishing; Chinese Physics C; 42; 5; 5-2018; 53102-53105
1674-1137
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1674-1137/42/5/053102
info:eu-repo/semantics/altIdentifier/doi/10.1088/1674-1137/42/5/053102
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv IOP Publishing
publisher.none.fl_str_mv IOP Publishing
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1843606770616893440
score 13.000565