Tsallis' quantum q-fields
- Autores
- Plastino, Ángel Luis; Rocca, Mario Carlos
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We generalize several well known quantum equations to a Tsallis' q-scenario, and provide a quantum version of some classical fields associated with them in the recent literature. We refer to the q-Schródinger, q-Klein-Gordon, q-Dirac, and q-Proca equations advanced in, respectively, Phys. Rev. Lett. 106, 140601 (2011), EPL 118, 61004 (2017) and references therein. We also introduce here equations corresponding to q-Yang-Mills fields, both in the Abelian and non-Abelian instances. We show how to define the q-quantum field theories corresponding to the above equations, introduce the pertinent actions, and obtain equations of motion via the minimum action principle. These q-fields are meaningful at very high energies (TeV scale) for q = 1.15, high energies (GeV scale) for q = 1.001, and low energies (MeV scale) for q = 1.000001 [Nucl. Phys. A 955 (2016) 16 and references therein]. (See the ALICE experiment at the LHC). Surprisingly enough, these q-fields are simultaneously q-exponential functions of the usual linear fields' logarithms.
Fil: A. Plastino. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina. IFLP, CONICET/UNLP; Argentina; Argentina
Fil: Rocca, Mario Carlos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina. IFLP, CONICET/UNLP; Argentina; Argentina - Materia
-
CLASSICAL FIELD THEORY
NON-LINEAR KLEIN-GORDON
NON-LINEAR Q-YANG-MILLS AND NON-LINEAR Q-PROCA FIELDS
NON-LINEAR SCHRÖDINGER AND NON-LINEAR Q-DIRAC FIELDS
QUANTUM FIELD THEORY - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/95921
Ver los metadatos del registro completo
id |
CONICETDig_681a4cfb529230c20931516588a0fcfb |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/95921 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Tsallis' quantum q-fieldsPlastino, Ángel LuisRocca, Mario CarlosCLASSICAL FIELD THEORYNON-LINEAR KLEIN-GORDONNON-LINEAR Q-YANG-MILLS AND NON-LINEAR Q-PROCA FIELDSNON-LINEAR SCHRÖDINGER AND NON-LINEAR Q-DIRAC FIELDSQUANTUM FIELD THEORYhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We generalize several well known quantum equations to a Tsallis' q-scenario, and provide a quantum version of some classical fields associated with them in the recent literature. We refer to the q-Schródinger, q-Klein-Gordon, q-Dirac, and q-Proca equations advanced in, respectively, Phys. Rev. Lett. 106, 140601 (2011), EPL 118, 61004 (2017) and references therein. We also introduce here equations corresponding to q-Yang-Mills fields, both in the Abelian and non-Abelian instances. We show how to define the q-quantum field theories corresponding to the above equations, introduce the pertinent actions, and obtain equations of motion via the minimum action principle. These q-fields are meaningful at very high energies (TeV scale) for q = 1.15, high energies (GeV scale) for q = 1.001, and low energies (MeV scale) for q = 1.000001 [Nucl. Phys. A 955 (2016) 16 and references therein]. (See the ALICE experiment at the LHC). Surprisingly enough, these q-fields are simultaneously q-exponential functions of the usual linear fields' logarithms.Fil: A. Plastino. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina. IFLP, CONICET/UNLP; Argentina; ArgentinaFil: Rocca, Mario Carlos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina. IFLP, CONICET/UNLP; Argentina; ArgentinaIOP Publishing2018-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/95921Plastino, Ángel Luis; Rocca, Mario Carlos; Tsallis' quantum q-fields; IOP Publishing; Chinese Physics C; 42; 5; 5-2018; 53102-531051674-1137CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1674-1137/42/5/053102info:eu-repo/semantics/altIdentifier/doi/10.1088/1674-1137/42/5/053102info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T11:41:45Zoai:ri.conicet.gov.ar:11336/95921instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 11:41:45.596CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Tsallis' quantum q-fields |
title |
Tsallis' quantum q-fields |
spellingShingle |
Tsallis' quantum q-fields Plastino, Ángel Luis CLASSICAL FIELD THEORY NON-LINEAR KLEIN-GORDON NON-LINEAR Q-YANG-MILLS AND NON-LINEAR Q-PROCA FIELDS NON-LINEAR SCHRÖDINGER AND NON-LINEAR Q-DIRAC FIELDS QUANTUM FIELD THEORY |
title_short |
Tsallis' quantum q-fields |
title_full |
Tsallis' quantum q-fields |
title_fullStr |
Tsallis' quantum q-fields |
title_full_unstemmed |
Tsallis' quantum q-fields |
title_sort |
Tsallis' quantum q-fields |
dc.creator.none.fl_str_mv |
Plastino, Ángel Luis Rocca, Mario Carlos |
author |
Plastino, Ángel Luis |
author_facet |
Plastino, Ángel Luis Rocca, Mario Carlos |
author_role |
author |
author2 |
Rocca, Mario Carlos |
author2_role |
author |
dc.subject.none.fl_str_mv |
CLASSICAL FIELD THEORY NON-LINEAR KLEIN-GORDON NON-LINEAR Q-YANG-MILLS AND NON-LINEAR Q-PROCA FIELDS NON-LINEAR SCHRÖDINGER AND NON-LINEAR Q-DIRAC FIELDS QUANTUM FIELD THEORY |
topic |
CLASSICAL FIELD THEORY NON-LINEAR KLEIN-GORDON NON-LINEAR Q-YANG-MILLS AND NON-LINEAR Q-PROCA FIELDS NON-LINEAR SCHRÖDINGER AND NON-LINEAR Q-DIRAC FIELDS QUANTUM FIELD THEORY |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We generalize several well known quantum equations to a Tsallis' q-scenario, and provide a quantum version of some classical fields associated with them in the recent literature. We refer to the q-Schródinger, q-Klein-Gordon, q-Dirac, and q-Proca equations advanced in, respectively, Phys. Rev. Lett. 106, 140601 (2011), EPL 118, 61004 (2017) and references therein. We also introduce here equations corresponding to q-Yang-Mills fields, both in the Abelian and non-Abelian instances. We show how to define the q-quantum field theories corresponding to the above equations, introduce the pertinent actions, and obtain equations of motion via the minimum action principle. These q-fields are meaningful at very high energies (TeV scale) for q = 1.15, high energies (GeV scale) for q = 1.001, and low energies (MeV scale) for q = 1.000001 [Nucl. Phys. A 955 (2016) 16 and references therein]. (See the ALICE experiment at the LHC). Surprisingly enough, these q-fields are simultaneously q-exponential functions of the usual linear fields' logarithms. Fil: A. Plastino. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina. IFLP, CONICET/UNLP; Argentina; Argentina Fil: Rocca, Mario Carlos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina. IFLP, CONICET/UNLP; Argentina; Argentina |
description |
We generalize several well known quantum equations to a Tsallis' q-scenario, and provide a quantum version of some classical fields associated with them in the recent literature. We refer to the q-Schródinger, q-Klein-Gordon, q-Dirac, and q-Proca equations advanced in, respectively, Phys. Rev. Lett. 106, 140601 (2011), EPL 118, 61004 (2017) and references therein. We also introduce here equations corresponding to q-Yang-Mills fields, both in the Abelian and non-Abelian instances. We show how to define the q-quantum field theories corresponding to the above equations, introduce the pertinent actions, and obtain equations of motion via the minimum action principle. These q-fields are meaningful at very high energies (TeV scale) for q = 1.15, high energies (GeV scale) for q = 1.001, and low energies (MeV scale) for q = 1.000001 [Nucl. Phys. A 955 (2016) 16 and references therein]. (See the ALICE experiment at the LHC). Surprisingly enough, these q-fields are simultaneously q-exponential functions of the usual linear fields' logarithms. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/95921 Plastino, Ángel Luis; Rocca, Mario Carlos; Tsallis' quantum q-fields; IOP Publishing; Chinese Physics C; 42; 5; 5-2018; 53102-53105 1674-1137 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/95921 |
identifier_str_mv |
Plastino, Ángel Luis; Rocca, Mario Carlos; Tsallis' quantum q-fields; IOP Publishing; Chinese Physics C; 42; 5; 5-2018; 53102-53105 1674-1137 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1674-1137/42/5/053102 info:eu-repo/semantics/altIdentifier/doi/10.1088/1674-1137/42/5/053102 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
IOP Publishing |
publisher.none.fl_str_mv |
IOP Publishing |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1843606770616893440 |
score |
13.000565 |