Stress-Dependent Anisotropic Rock Physics Modelling in Organic Shales of the Inoceramus Formation, Austral Basin, Argentina

Autores
Panizza, Guido; Ravazzoli, Claudia Leonor; Camilión, Emilio
Año de publicación
2022
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We present an original anisotropic stress-dependent rock physics model for the organic rich shales of the Inoceramus formation, the main source rock and unconventional reservoir in the Austral Basin, Argentina. We implement a novel combination of anisotropic poroelastic theories which take into account organic matter content, lithologic description, fluid type, saturation and stress state. In this approach, we model the infill as a mixture of solid organic matter and interconnected pore fluids, using total organic carbon analysis and petrophysical data from two wells. The compliance of the matrix is considered to be stress-dependent following the porosity deformation approach (PDA). The elasticity and density of the multiminerallic saturated rock is obtained using the mineral fractions obtained from X-ray diffraction information, porosity analysis and fluid properties. This allows us to compute synthetic acoustic velocities. The calibration of the model also involved the inversion of several unknowns (the set of PDA parameters, clays and kerogen physical properties) by minimizing the misfit between modelled and ultrasonic measured velocities. Due to the lack of oblique velocity data, to complete the compliance tensor, a static-to-dynamic ratio was built for each sample, and constant anellipticity was assumed with increasing stress. The model calibrated with this innovative procedure demonstrated its usefulness to predict stiffness, compliance, and compressional and shear wave velocity variations under variable applied stress. It is also useful for the estimation of stress-related changes of porosity and Biot’s effective stress coefficients, which can be difficult to measure in shales, and therefore there are few values reported in the literature.
Fil: Panizza, Guido. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. YPF - Tecnología; Argentina
Fil: Ravazzoli, Claudia Leonor. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina
Fil: Camilión, Emilio. YPF - Tecnología; Argentina
Materia
ANISOTROPY
INVERSION
POROSITY DEFORMATION APPROACH (PDA)
SHALE
SSTATIC-TO-DYNAMIC RELATION
STRESS DEPENDENCY
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/215449

id CONICETDig_67dd254a394f33c195c95059e0656aca
oai_identifier_str oai:ri.conicet.gov.ar:11336/215449
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Stress-Dependent Anisotropic Rock Physics Modelling in Organic Shales of the Inoceramus Formation, Austral Basin, ArgentinaPanizza, GuidoRavazzoli, Claudia LeonorCamilión, EmilioANISOTROPYINVERSIONPOROSITY DEFORMATION APPROACH (PDA)SHALESSTATIC-TO-DYNAMIC RELATIONSTRESS DEPENDENCYhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1We present an original anisotropic stress-dependent rock physics model for the organic rich shales of the Inoceramus formation, the main source rock and unconventional reservoir in the Austral Basin, Argentina. We implement a novel combination of anisotropic poroelastic theories which take into account organic matter content, lithologic description, fluid type, saturation and stress state. In this approach, we model the infill as a mixture of solid organic matter and interconnected pore fluids, using total organic carbon analysis and petrophysical data from two wells. The compliance of the matrix is considered to be stress-dependent following the porosity deformation approach (PDA). The elasticity and density of the multiminerallic saturated rock is obtained using the mineral fractions obtained from X-ray diffraction information, porosity analysis and fluid properties. This allows us to compute synthetic acoustic velocities. The calibration of the model also involved the inversion of several unknowns (the set of PDA parameters, clays and kerogen physical properties) by minimizing the misfit between modelled and ultrasonic measured velocities. Due to the lack of oblique velocity data, to complete the compliance tensor, a static-to-dynamic ratio was built for each sample, and constant anellipticity was assumed with increasing stress. The model calibrated with this innovative procedure demonstrated its usefulness to predict stiffness, compliance, and compressional and shear wave velocity variations under variable applied stress. It is also useful for the estimation of stress-related changes of porosity and Biot’s effective stress coefficients, which can be difficult to measure in shales, and therefore there are few values reported in the literature.Fil: Panizza, Guido. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. YPF - Tecnología; ArgentinaFil: Ravazzoli, Claudia Leonor. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaFil: Camilión, Emilio. YPF - Tecnología; ArgentinaBirkhauser Verlag Ag2022-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/215449Panizza, Guido; Ravazzoli, Claudia Leonor; Camilión, Emilio; Stress-Dependent Anisotropic Rock Physics Modelling in Organic Shales of the Inoceramus Formation, Austral Basin, Argentina; Birkhauser Verlag Ag; Pure And Applied Geophysics; 179; 6-7; 6-2022; 2437-24600033-4553CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s00024-022-03049-1info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:17:43Zoai:ri.conicet.gov.ar:11336/215449instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:17:43.652CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Stress-Dependent Anisotropic Rock Physics Modelling in Organic Shales of the Inoceramus Formation, Austral Basin, Argentina
title Stress-Dependent Anisotropic Rock Physics Modelling in Organic Shales of the Inoceramus Formation, Austral Basin, Argentina
spellingShingle Stress-Dependent Anisotropic Rock Physics Modelling in Organic Shales of the Inoceramus Formation, Austral Basin, Argentina
Panizza, Guido
ANISOTROPY
INVERSION
POROSITY DEFORMATION APPROACH (PDA)
SHALE
SSTATIC-TO-DYNAMIC RELATION
STRESS DEPENDENCY
title_short Stress-Dependent Anisotropic Rock Physics Modelling in Organic Shales of the Inoceramus Formation, Austral Basin, Argentina
title_full Stress-Dependent Anisotropic Rock Physics Modelling in Organic Shales of the Inoceramus Formation, Austral Basin, Argentina
title_fullStr Stress-Dependent Anisotropic Rock Physics Modelling in Organic Shales of the Inoceramus Formation, Austral Basin, Argentina
title_full_unstemmed Stress-Dependent Anisotropic Rock Physics Modelling in Organic Shales of the Inoceramus Formation, Austral Basin, Argentina
title_sort Stress-Dependent Anisotropic Rock Physics Modelling in Organic Shales of the Inoceramus Formation, Austral Basin, Argentina
dc.creator.none.fl_str_mv Panizza, Guido
Ravazzoli, Claudia Leonor
Camilión, Emilio
author Panizza, Guido
author_facet Panizza, Guido
Ravazzoli, Claudia Leonor
Camilión, Emilio
author_role author
author2 Ravazzoli, Claudia Leonor
Camilión, Emilio
author2_role author
author
dc.subject.none.fl_str_mv ANISOTROPY
INVERSION
POROSITY DEFORMATION APPROACH (PDA)
SHALE
SSTATIC-TO-DYNAMIC RELATION
STRESS DEPENDENCY
topic ANISOTROPY
INVERSION
POROSITY DEFORMATION APPROACH (PDA)
SHALE
SSTATIC-TO-DYNAMIC RELATION
STRESS DEPENDENCY
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.5
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We present an original anisotropic stress-dependent rock physics model for the organic rich shales of the Inoceramus formation, the main source rock and unconventional reservoir in the Austral Basin, Argentina. We implement a novel combination of anisotropic poroelastic theories which take into account organic matter content, lithologic description, fluid type, saturation and stress state. In this approach, we model the infill as a mixture of solid organic matter and interconnected pore fluids, using total organic carbon analysis and petrophysical data from two wells. The compliance of the matrix is considered to be stress-dependent following the porosity deformation approach (PDA). The elasticity and density of the multiminerallic saturated rock is obtained using the mineral fractions obtained from X-ray diffraction information, porosity analysis and fluid properties. This allows us to compute synthetic acoustic velocities. The calibration of the model also involved the inversion of several unknowns (the set of PDA parameters, clays and kerogen physical properties) by minimizing the misfit between modelled and ultrasonic measured velocities. Due to the lack of oblique velocity data, to complete the compliance tensor, a static-to-dynamic ratio was built for each sample, and constant anellipticity was assumed with increasing stress. The model calibrated with this innovative procedure demonstrated its usefulness to predict stiffness, compliance, and compressional and shear wave velocity variations under variable applied stress. It is also useful for the estimation of stress-related changes of porosity and Biot’s effective stress coefficients, which can be difficult to measure in shales, and therefore there are few values reported in the literature.
Fil: Panizza, Guido. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. YPF - Tecnología; Argentina
Fil: Ravazzoli, Claudia Leonor. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina
Fil: Camilión, Emilio. YPF - Tecnología; Argentina
description We present an original anisotropic stress-dependent rock physics model for the organic rich shales of the Inoceramus formation, the main source rock and unconventional reservoir in the Austral Basin, Argentina. We implement a novel combination of anisotropic poroelastic theories which take into account organic matter content, lithologic description, fluid type, saturation and stress state. In this approach, we model the infill as a mixture of solid organic matter and interconnected pore fluids, using total organic carbon analysis and petrophysical data from two wells. The compliance of the matrix is considered to be stress-dependent following the porosity deformation approach (PDA). The elasticity and density of the multiminerallic saturated rock is obtained using the mineral fractions obtained from X-ray diffraction information, porosity analysis and fluid properties. This allows us to compute synthetic acoustic velocities. The calibration of the model also involved the inversion of several unknowns (the set of PDA parameters, clays and kerogen physical properties) by minimizing the misfit between modelled and ultrasonic measured velocities. Due to the lack of oblique velocity data, to complete the compliance tensor, a static-to-dynamic ratio was built for each sample, and constant anellipticity was assumed with increasing stress. The model calibrated with this innovative procedure demonstrated its usefulness to predict stiffness, compliance, and compressional and shear wave velocity variations under variable applied stress. It is also useful for the estimation of stress-related changes of porosity and Biot’s effective stress coefficients, which can be difficult to measure in shales, and therefore there are few values reported in the literature.
publishDate 2022
dc.date.none.fl_str_mv 2022-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/215449
Panizza, Guido; Ravazzoli, Claudia Leonor; Camilión, Emilio; Stress-Dependent Anisotropic Rock Physics Modelling in Organic Shales of the Inoceramus Formation, Austral Basin, Argentina; Birkhauser Verlag Ag; Pure And Applied Geophysics; 179; 6-7; 6-2022; 2437-2460
0033-4553
CONICET Digital
CONICET
url http://hdl.handle.net/11336/215449
identifier_str_mv Panizza, Guido; Ravazzoli, Claudia Leonor; Camilión, Emilio; Stress-Dependent Anisotropic Rock Physics Modelling in Organic Shales of the Inoceramus Formation, Austral Basin, Argentina; Birkhauser Verlag Ag; Pure And Applied Geophysics; 179; 6-7; 6-2022; 2437-2460
0033-4553
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1007/s00024-022-03049-1
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Birkhauser Verlag Ag
publisher.none.fl_str_mv Birkhauser Verlag Ag
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083326288330753
score 13.22299