Stress-Dependent Anisotropic Rock Physics Modelling in Organic Shales of the Inoceramus Formation, Austral Basin, Argentina
- Autores
- Panizza, Guido; Ravazzoli, Claudia Leonor; Camilión, Emilio
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We present an original anisotropic stress-dependent rock physics model for the organic rich shales of the Inoceramus formation, the main source rock and unconventional reservoir in the Austral Basin, Argentina. We implement a novel combination of anisotropic poroelastic theories which take into account organic matter content, lithologic description, fluid type, saturation and stress state. In this approach, we model the infill as a mixture of solid organic matter and interconnected pore fluids, using total organic carbon analysis and petrophysical data from two wells. The compliance of the matrix is considered to be stress-dependent following the porosity deformation approach (PDA). The elasticity and density of the multiminerallic saturated rock is obtained using the mineral fractions obtained from X-ray diffraction information, porosity analysis and fluid properties. This allows us to compute synthetic acoustic velocities. The calibration of the model also involved the inversion of several unknowns (the set of PDA parameters, clays and kerogen physical properties) by minimizing the misfit between modelled and ultrasonic measured velocities. Due to the lack of oblique velocity data, to complete the compliance tensor, a static-to-dynamic ratio was built for each sample, and constant anellipticity was assumed with increasing stress. The model calibrated with this innovative procedure demonstrated its usefulness to predict stiffness, compliance, and compressional and shear wave velocity variations under variable applied stress. It is also useful for the estimation of stress-related changes of porosity and Biot’s effective stress coefficients, which can be difficult to measure in shales, and therefore there are few values reported in the literature.
Fil: Panizza, Guido. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. YPF - Tecnología; Argentina
Fil: Ravazzoli, Claudia Leonor. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina
Fil: Camilión, Emilio. YPF - Tecnología; Argentina - Materia
-
ANISOTROPY
INVERSION
POROSITY DEFORMATION APPROACH (PDA)
SHALE
SSTATIC-TO-DYNAMIC RELATION
STRESS DEPENDENCY - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/215449
Ver los metadatos del registro completo
id |
CONICETDig_67dd254a394f33c195c95059e0656aca |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/215449 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Stress-Dependent Anisotropic Rock Physics Modelling in Organic Shales of the Inoceramus Formation, Austral Basin, ArgentinaPanizza, GuidoRavazzoli, Claudia LeonorCamilión, EmilioANISOTROPYINVERSIONPOROSITY DEFORMATION APPROACH (PDA)SHALESSTATIC-TO-DYNAMIC RELATIONSTRESS DEPENDENCYhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1We present an original anisotropic stress-dependent rock physics model for the organic rich shales of the Inoceramus formation, the main source rock and unconventional reservoir in the Austral Basin, Argentina. We implement a novel combination of anisotropic poroelastic theories which take into account organic matter content, lithologic description, fluid type, saturation and stress state. In this approach, we model the infill as a mixture of solid organic matter and interconnected pore fluids, using total organic carbon analysis and petrophysical data from two wells. The compliance of the matrix is considered to be stress-dependent following the porosity deformation approach (PDA). The elasticity and density of the multiminerallic saturated rock is obtained using the mineral fractions obtained from X-ray diffraction information, porosity analysis and fluid properties. This allows us to compute synthetic acoustic velocities. The calibration of the model also involved the inversion of several unknowns (the set of PDA parameters, clays and kerogen physical properties) by minimizing the misfit between modelled and ultrasonic measured velocities. Due to the lack of oblique velocity data, to complete the compliance tensor, a static-to-dynamic ratio was built for each sample, and constant anellipticity was assumed with increasing stress. The model calibrated with this innovative procedure demonstrated its usefulness to predict stiffness, compliance, and compressional and shear wave velocity variations under variable applied stress. It is also useful for the estimation of stress-related changes of porosity and Biot’s effective stress coefficients, which can be difficult to measure in shales, and therefore there are few values reported in the literature.Fil: Panizza, Guido. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. YPF - Tecnología; ArgentinaFil: Ravazzoli, Claudia Leonor. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaFil: Camilión, Emilio. YPF - Tecnología; ArgentinaBirkhauser Verlag Ag2022-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/215449Panizza, Guido; Ravazzoli, Claudia Leonor; Camilión, Emilio; Stress-Dependent Anisotropic Rock Physics Modelling in Organic Shales of the Inoceramus Formation, Austral Basin, Argentina; Birkhauser Verlag Ag; Pure And Applied Geophysics; 179; 6-7; 6-2022; 2437-24600033-4553CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s00024-022-03049-1info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:17:43Zoai:ri.conicet.gov.ar:11336/215449instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:17:43.652CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Stress-Dependent Anisotropic Rock Physics Modelling in Organic Shales of the Inoceramus Formation, Austral Basin, Argentina |
title |
Stress-Dependent Anisotropic Rock Physics Modelling in Organic Shales of the Inoceramus Formation, Austral Basin, Argentina |
spellingShingle |
Stress-Dependent Anisotropic Rock Physics Modelling in Organic Shales of the Inoceramus Formation, Austral Basin, Argentina Panizza, Guido ANISOTROPY INVERSION POROSITY DEFORMATION APPROACH (PDA) SHALE SSTATIC-TO-DYNAMIC RELATION STRESS DEPENDENCY |
title_short |
Stress-Dependent Anisotropic Rock Physics Modelling in Organic Shales of the Inoceramus Formation, Austral Basin, Argentina |
title_full |
Stress-Dependent Anisotropic Rock Physics Modelling in Organic Shales of the Inoceramus Formation, Austral Basin, Argentina |
title_fullStr |
Stress-Dependent Anisotropic Rock Physics Modelling in Organic Shales of the Inoceramus Formation, Austral Basin, Argentina |
title_full_unstemmed |
Stress-Dependent Anisotropic Rock Physics Modelling in Organic Shales of the Inoceramus Formation, Austral Basin, Argentina |
title_sort |
Stress-Dependent Anisotropic Rock Physics Modelling in Organic Shales of the Inoceramus Formation, Austral Basin, Argentina |
dc.creator.none.fl_str_mv |
Panizza, Guido Ravazzoli, Claudia Leonor Camilión, Emilio |
author |
Panizza, Guido |
author_facet |
Panizza, Guido Ravazzoli, Claudia Leonor Camilión, Emilio |
author_role |
author |
author2 |
Ravazzoli, Claudia Leonor Camilión, Emilio |
author2_role |
author author |
dc.subject.none.fl_str_mv |
ANISOTROPY INVERSION POROSITY DEFORMATION APPROACH (PDA) SHALE SSTATIC-TO-DYNAMIC RELATION STRESS DEPENDENCY |
topic |
ANISOTROPY INVERSION POROSITY DEFORMATION APPROACH (PDA) SHALE SSTATIC-TO-DYNAMIC RELATION STRESS DEPENDENCY |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We present an original anisotropic stress-dependent rock physics model for the organic rich shales of the Inoceramus formation, the main source rock and unconventional reservoir in the Austral Basin, Argentina. We implement a novel combination of anisotropic poroelastic theories which take into account organic matter content, lithologic description, fluid type, saturation and stress state. In this approach, we model the infill as a mixture of solid organic matter and interconnected pore fluids, using total organic carbon analysis and petrophysical data from two wells. The compliance of the matrix is considered to be stress-dependent following the porosity deformation approach (PDA). The elasticity and density of the multiminerallic saturated rock is obtained using the mineral fractions obtained from X-ray diffraction information, porosity analysis and fluid properties. This allows us to compute synthetic acoustic velocities. The calibration of the model also involved the inversion of several unknowns (the set of PDA parameters, clays and kerogen physical properties) by minimizing the misfit between modelled and ultrasonic measured velocities. Due to the lack of oblique velocity data, to complete the compliance tensor, a static-to-dynamic ratio was built for each sample, and constant anellipticity was assumed with increasing stress. The model calibrated with this innovative procedure demonstrated its usefulness to predict stiffness, compliance, and compressional and shear wave velocity variations under variable applied stress. It is also useful for the estimation of stress-related changes of porosity and Biot’s effective stress coefficients, which can be difficult to measure in shales, and therefore there are few values reported in the literature. Fil: Panizza, Guido. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. YPF - Tecnología; Argentina Fil: Ravazzoli, Claudia Leonor. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina Fil: Camilión, Emilio. YPF - Tecnología; Argentina |
description |
We present an original anisotropic stress-dependent rock physics model for the organic rich shales of the Inoceramus formation, the main source rock and unconventional reservoir in the Austral Basin, Argentina. We implement a novel combination of anisotropic poroelastic theories which take into account organic matter content, lithologic description, fluid type, saturation and stress state. In this approach, we model the infill as a mixture of solid organic matter and interconnected pore fluids, using total organic carbon analysis and petrophysical data from two wells. The compliance of the matrix is considered to be stress-dependent following the porosity deformation approach (PDA). The elasticity and density of the multiminerallic saturated rock is obtained using the mineral fractions obtained from X-ray diffraction information, porosity analysis and fluid properties. This allows us to compute synthetic acoustic velocities. The calibration of the model also involved the inversion of several unknowns (the set of PDA parameters, clays and kerogen physical properties) by minimizing the misfit between modelled and ultrasonic measured velocities. Due to the lack of oblique velocity data, to complete the compliance tensor, a static-to-dynamic ratio was built for each sample, and constant anellipticity was assumed with increasing stress. The model calibrated with this innovative procedure demonstrated its usefulness to predict stiffness, compliance, and compressional and shear wave velocity variations under variable applied stress. It is also useful for the estimation of stress-related changes of porosity and Biot’s effective stress coefficients, which can be difficult to measure in shales, and therefore there are few values reported in the literature. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/215449 Panizza, Guido; Ravazzoli, Claudia Leonor; Camilión, Emilio; Stress-Dependent Anisotropic Rock Physics Modelling in Organic Shales of the Inoceramus Formation, Austral Basin, Argentina; Birkhauser Verlag Ag; Pure And Applied Geophysics; 179; 6-7; 6-2022; 2437-2460 0033-4553 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/215449 |
identifier_str_mv |
Panizza, Guido; Ravazzoli, Claudia Leonor; Camilión, Emilio; Stress-Dependent Anisotropic Rock Physics Modelling in Organic Shales of the Inoceramus Formation, Austral Basin, Argentina; Birkhauser Verlag Ag; Pure And Applied Geophysics; 179; 6-7; 6-2022; 2437-2460 0033-4553 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s00024-022-03049-1 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Birkhauser Verlag Ag |
publisher.none.fl_str_mv |
Birkhauser Verlag Ag |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083326288330753 |
score |
13.22299 |