Charge percolation in redox-active thin membrane hybrids of mesoporous silica and poly(viologens)

Autores
Saint Andre, Simon; Albanese, Federico; Soler Illia, Galo Juan de Avila Arturo; Tagliazucchi, Mario Eugenio
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
This work reports the fabrication of redox-active films of oligomeric and molecular viologens and mesoporous silica via the infiltration method. Pore-ellipsometry and UV-vis confirm that low-molecular-weight poly(viologens) in solution are able to enter the mesoporous structure, in contrast to high-molecular weight polymers that adsorb only on top of the film. Cyclic voltammetry shows that viologens are able to reach the bottom of the pores and access the electrode/film interface. However, the number of viologen sites that can be accessed by cyclic voltammetry at 50 mV s-1 is only a tenth of the total viologen population determined by UV-vis and pore-ellipsometry. The effect is ascribed to the very small apparent diffusion coefficient for charge transport within the film (Dapp < 10-12 cm2 s-1). A theoretical model is put forward to describe charge transport via the electron-hopping mechanism for redox sites randomly adsorbed on the inner walls of the pores. Our model predicts that the threshold of charge percolation occurs for viologen surface coverages close to those observed in our experiments; therefore, the low fraction of electrochemically addressable viologens is ascribed to inefficient charge percolation via the electron-hopping mechanism.
Fil: Saint Andre, Simon. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Albanese, Federico. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Soler Illia, Galo Juan de Avila Arturo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Universidad Nacional de San Martin. Instituto de Nanosistemas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Tagliazucchi, Mario Eugenio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
Materia
Charge percolation
Nanopore
Redox
Electrochemistry
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/118027

id CONICETDig_67dcb1304ee86384b3ec5d8c025ffccc
oai_identifier_str oai:ri.conicet.gov.ar:11336/118027
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Charge percolation in redox-active thin membrane hybrids of mesoporous silica and poly(viologens)Saint Andre, SimonAlbanese, FedericoSoler Illia, Galo Juan de Avila ArturoTagliazucchi, Mario EugenioCharge percolationNanoporeRedoxElectrochemistryhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1This work reports the fabrication of redox-active films of oligomeric and molecular viologens and mesoporous silica via the infiltration method. Pore-ellipsometry and UV-vis confirm that low-molecular-weight poly(viologens) in solution are able to enter the mesoporous structure, in contrast to high-molecular weight polymers that adsorb only on top of the film. Cyclic voltammetry shows that viologens are able to reach the bottom of the pores and access the electrode/film interface. However, the number of viologen sites that can be accessed by cyclic voltammetry at 50 mV s-1 is only a tenth of the total viologen population determined by UV-vis and pore-ellipsometry. The effect is ascribed to the very small apparent diffusion coefficient for charge transport within the film (Dapp < 10-12 cm2 s-1). A theoretical model is put forward to describe charge transport via the electron-hopping mechanism for redox sites randomly adsorbed on the inner walls of the pores. Our model predicts that the threshold of charge percolation occurs for viologen surface coverages close to those observed in our experiments; therefore, the low fraction of electrochemically addressable viologens is ascribed to inefficient charge percolation via the electron-hopping mechanism.Fil: Saint Andre, Simon. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Albanese, Federico. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Soler Illia, Galo Juan de Avila Arturo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Universidad Nacional de San Martin. Instituto de Nanosistemas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Tagliazucchi, Mario Eugenio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaRoyal Society of Chemistry2019-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/118027Saint Andre, Simon; Albanese, Federico; Soler Illia, Galo Juan de Avila Arturo; Tagliazucchi, Mario Eugenio; Charge percolation in redox-active thin membrane hybrids of mesoporous silica and poly(viologens); Royal Society of Chemistry; Physical Chemistry Chemical Physics; 21; 5; 1-2019; 2743-27541463-9076CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://xlink.rsc.org/?DOI=C8CP07192Finfo:eu-repo/semantics/altIdentifier/doi/10.1039/C8CP07192Finfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:26:44Zoai:ri.conicet.gov.ar:11336/118027instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:26:44.465CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Charge percolation in redox-active thin membrane hybrids of mesoporous silica and poly(viologens)
title Charge percolation in redox-active thin membrane hybrids of mesoporous silica and poly(viologens)
spellingShingle Charge percolation in redox-active thin membrane hybrids of mesoporous silica and poly(viologens)
Saint Andre, Simon
Charge percolation
Nanopore
Redox
Electrochemistry
title_short Charge percolation in redox-active thin membrane hybrids of mesoporous silica and poly(viologens)
title_full Charge percolation in redox-active thin membrane hybrids of mesoporous silica and poly(viologens)
title_fullStr Charge percolation in redox-active thin membrane hybrids of mesoporous silica and poly(viologens)
title_full_unstemmed Charge percolation in redox-active thin membrane hybrids of mesoporous silica and poly(viologens)
title_sort Charge percolation in redox-active thin membrane hybrids of mesoporous silica and poly(viologens)
dc.creator.none.fl_str_mv Saint Andre, Simon
Albanese, Federico
Soler Illia, Galo Juan de Avila Arturo
Tagliazucchi, Mario Eugenio
author Saint Andre, Simon
author_facet Saint Andre, Simon
Albanese, Federico
Soler Illia, Galo Juan de Avila Arturo
Tagliazucchi, Mario Eugenio
author_role author
author2 Albanese, Federico
Soler Illia, Galo Juan de Avila Arturo
Tagliazucchi, Mario Eugenio
author2_role author
author
author
dc.subject.none.fl_str_mv Charge percolation
Nanopore
Redox
Electrochemistry
topic Charge percolation
Nanopore
Redox
Electrochemistry
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv This work reports the fabrication of redox-active films of oligomeric and molecular viologens and mesoporous silica via the infiltration method. Pore-ellipsometry and UV-vis confirm that low-molecular-weight poly(viologens) in solution are able to enter the mesoporous structure, in contrast to high-molecular weight polymers that adsorb only on top of the film. Cyclic voltammetry shows that viologens are able to reach the bottom of the pores and access the electrode/film interface. However, the number of viologen sites that can be accessed by cyclic voltammetry at 50 mV s-1 is only a tenth of the total viologen population determined by UV-vis and pore-ellipsometry. The effect is ascribed to the very small apparent diffusion coefficient for charge transport within the film (Dapp < 10-12 cm2 s-1). A theoretical model is put forward to describe charge transport via the electron-hopping mechanism for redox sites randomly adsorbed on the inner walls of the pores. Our model predicts that the threshold of charge percolation occurs for viologen surface coverages close to those observed in our experiments; therefore, the low fraction of electrochemically addressable viologens is ascribed to inefficient charge percolation via the electron-hopping mechanism.
Fil: Saint Andre, Simon. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Albanese, Federico. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Soler Illia, Galo Juan de Avila Arturo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Universidad Nacional de San Martin. Instituto de Nanosistemas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Tagliazucchi, Mario Eugenio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
description This work reports the fabrication of redox-active films of oligomeric and molecular viologens and mesoporous silica via the infiltration method. Pore-ellipsometry and UV-vis confirm that low-molecular-weight poly(viologens) in solution are able to enter the mesoporous structure, in contrast to high-molecular weight polymers that adsorb only on top of the film. Cyclic voltammetry shows that viologens are able to reach the bottom of the pores and access the electrode/film interface. However, the number of viologen sites that can be accessed by cyclic voltammetry at 50 mV s-1 is only a tenth of the total viologen population determined by UV-vis and pore-ellipsometry. The effect is ascribed to the very small apparent diffusion coefficient for charge transport within the film (Dapp < 10-12 cm2 s-1). A theoretical model is put forward to describe charge transport via the electron-hopping mechanism for redox sites randomly adsorbed on the inner walls of the pores. Our model predicts that the threshold of charge percolation occurs for viologen surface coverages close to those observed in our experiments; therefore, the low fraction of electrochemically addressable viologens is ascribed to inefficient charge percolation via the electron-hopping mechanism.
publishDate 2019
dc.date.none.fl_str_mv 2019-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/118027
Saint Andre, Simon; Albanese, Federico; Soler Illia, Galo Juan de Avila Arturo; Tagliazucchi, Mario Eugenio; Charge percolation in redox-active thin membrane hybrids of mesoporous silica and poly(viologens); Royal Society of Chemistry; Physical Chemistry Chemical Physics; 21; 5; 1-2019; 2743-2754
1463-9076
CONICET Digital
CONICET
url http://hdl.handle.net/11336/118027
identifier_str_mv Saint Andre, Simon; Albanese, Federico; Soler Illia, Galo Juan de Avila Arturo; Tagliazucchi, Mario Eugenio; Charge percolation in redox-active thin membrane hybrids of mesoporous silica and poly(viologens); Royal Society of Chemistry; Physical Chemistry Chemical Physics; 21; 5; 1-2019; 2743-2754
1463-9076
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://xlink.rsc.org/?DOI=C8CP07192F
info:eu-repo/semantics/altIdentifier/doi/10.1039/C8CP07192F
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Royal Society of Chemistry
publisher.none.fl_str_mv Royal Society of Chemistry
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846082715546288128
score 13.22299