Low molecular weight amino acid-based derivatives: from organogels to single crystals and mesocrystals

Autores
Di Salvo, Florencia; Movilla, Federico; Reynares, Juan Manuel; Sanchez Montilva, Olga Carolina
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Amino acids are able to self-assemble into ordered superstructures, also called mesocrystals, when they are subjected to certain crystallisation conditions such as, pH, supersaturation level and the use of additives, being the last one the most popular strategy [1, 2]. Besides, self-assembly strategies applied to low-molecular weight building blocks can conduct to supramolecular gels. Their properties can be modulated by variation of temperature or solvent, since these changes directly affect the strength of the non-covalent interactions within the gel network [3]. The obtaining of both, supramolecular gels or crystalline materials, is governed by the presence of non-covalent interactions, resulting in spanning network that can immobilise solvents for the first ones or, the self-assembly between the building blocks, to give place to the others. Thus, there is a delicate balance for a low-weight molecule to behave as a gelator or crystal. Herein, we present a new family of chiral L-amino-acid-based low-weight molecules which behave as excellent building blocks for the construction of supramolecular gels or crystalline structures. Compounds 1-3 are obtained as zwitterions after the reaction between piperonal and L-Alanine, L-Phenylalanine and L-Tyrosine, respectively. Crystallisation experiments using organic solvents are only possible with dilute solutions of the amino acid derivatives due to their low solubility. Compounds 1 and 3 conduct mainly to polycrystalline materials and 2 gives place to crystalline superstructures with spherical morphologies, results attributed to the different solubility and supramolecular properties conferred by the amino acid bone. All derivatives are soluble in basic media after the deprotonation of the zwitterion. After a slow evaporation of the solvent of the basic solutions, spherical-like mesocrystals are obtained. Due to their structural features, compounds 1-3 are also soluble in acids. After slow diffusion of hydrogen chloride vapours in basic solutions of 2, single crystals suitable for XRD studies are obtained. The crystallographic results confirm the presence of the protonated derivative. Although 1 and 3 do not give place to crystals of suitable quality under the same conditions, experiments using other acids are in progress. In order to increase the solubility of compounds 1-3 in their zwitterionic form in organic solvents, the temperature of the solutions can be increased. Only the derivative of phenylalanine is soluble in higher concentrations after increasing the temperature and then after cooling, it gives place to supramolecular gels. The reversibility of the gelification process with temperature is also observed. In conclusion, it is possible to suggest that the presence and directionality of certain functional groups and the intermolecular interactions developed, such as the existence or not of the OH and the phenyl group, are key factors in the mechanism of self-assembly into hierarchical structures, single crystals or even supramolecular organogels. Furthermore, the strong pH dependence allows the obtaining of single crystals or the assembly to crystalline superstructures. This new family of low-molecular-mass derivatives shows a huge versatility regarding supramolecular properties. Varying the aldehyde and/or the amino acid opens a broad perspective for the design of novel self-assembly architectures for the further development of functional soft and/or crystalline materials. Rferences[1] Jiang, H. et al. (2011). Cryst. Growth Des., 11, 3243?3249, and references therein. [2] Ejgenberg, M. & Mastai, Y. (2012). Cryst. Growth Des., 12, 4995−5001. [3] Buerkle, L.E. & Rowan, S.J. (2012). Chem. Soc. Rev., 41, 6089?6102.
Fil: Di Salvo, Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; Argentina
Fil: Movilla, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; Argentina
Fil: Reynares, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; Argentina
Fil: Sanchez Montilva, Olga Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; Argentina
Materia
AMINO ACIDS
MESOCRYSTALS
SUPRAMOLECULAR ORGANOGELS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/65349

id CONICETDig_676b612eb6811c81bf74c5b6865cf69b
oai_identifier_str oai:ri.conicet.gov.ar:11336/65349
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Low molecular weight amino acid-based derivatives: from organogels to single crystals and mesocrystalsDi Salvo, FlorenciaMovilla, FedericoReynares, Juan ManuelSanchez Montilva, Olga CarolinaAMINO ACIDSMESOCRYSTALSSUPRAMOLECULAR ORGANOGELShttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Amino acids are able to self-assemble into ordered superstructures, also called mesocrystals, when they are subjected to certain crystallisation conditions such as, pH, supersaturation level and the use of additives, being the last one the most popular strategy [1, 2]. Besides, self-assembly strategies applied to low-molecular weight building blocks can conduct to supramolecular gels. Their properties can be modulated by variation of temperature or solvent, since these changes directly affect the strength of the non-covalent interactions within the gel network [3]. The obtaining of both, supramolecular gels or crystalline materials, is governed by the presence of non-covalent interactions, resulting in spanning network that can immobilise solvents for the first ones or, the self-assembly between the building blocks, to give place to the others. Thus, there is a delicate balance for a low-weight molecule to behave as a gelator or crystal. Herein, we present a new family of chiral L-amino-acid-based low-weight molecules which behave as excellent building blocks for the construction of supramolecular gels or crystalline structures. Compounds 1-3 are obtained as zwitterions after the reaction between piperonal and L-Alanine, L-Phenylalanine and L-Tyrosine, respectively. Crystallisation experiments using organic solvents are only possible with dilute solutions of the amino acid derivatives due to their low solubility. Compounds 1 and 3 conduct mainly to polycrystalline materials and 2 gives place to crystalline superstructures with spherical morphologies, results attributed to the different solubility and supramolecular properties conferred by the amino acid bone. All derivatives are soluble in basic media after the deprotonation of the zwitterion. After a slow evaporation of the solvent of the basic solutions, spherical-like mesocrystals are obtained. Due to their structural features, compounds 1-3 are also soluble in acids. After slow diffusion of hydrogen chloride vapours in basic solutions of 2, single crystals suitable for XRD studies are obtained. The crystallographic results confirm the presence of the protonated derivative. Although 1 and 3 do not give place to crystals of suitable quality under the same conditions, experiments using other acids are in progress. In order to increase the solubility of compounds 1-3 in their zwitterionic form in organic solvents, the temperature of the solutions can be increased. Only the derivative of phenylalanine is soluble in higher concentrations after increasing the temperature and then after cooling, it gives place to supramolecular gels. The reversibility of the gelification process with temperature is also observed. In conclusion, it is possible to suggest that the presence and directionality of certain functional groups and the intermolecular interactions developed, such as the existence or not of the OH and the phenyl group, are key factors in the mechanism of self-assembly into hierarchical structures, single crystals or even supramolecular organogels. Furthermore, the strong pH dependence allows the obtaining of single crystals or the assembly to crystalline superstructures. This new family of low-molecular-mass derivatives shows a huge versatility regarding supramolecular properties. Varying the aldehyde and/or the amino acid opens a broad perspective for the design of novel self-assembly architectures for the further development of functional soft and/or crystalline materials. Rferences[1] Jiang, H. et al. (2011). Cryst. Growth Des., 11, 3243?3249, and references therein. [2] Ejgenberg, M. & Mastai, Y. (2012). Cryst. Growth Des., 12, 4995−5001. [3] Buerkle, L.E. & Rowan, S.J. (2012). Chem. Soc. Rev., 41, 6089?6102.Fil: Di Salvo, Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; ArgentinaFil: Movilla, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; ArgentinaFil: Reynares, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; ArgentinaFil: Sanchez Montilva, Olga Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; ArgentinaInternational Union of Crystallography2017-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/65349Di Salvo, Florencia; Movilla, Federico; Reynares, Juan Manuel; Sanchez Montilva, Olga Carolina; Low molecular weight amino acid-based derivatives: from organogels to single crystals and mesocrystals; International Union of Crystallography; Acta Crystallographica Section A Foundations and Advances; 73; a2; 12-2017; C1097-C10972053-2733CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://scripts.iucr.org/cgi-bin/paper?S2053273317084777info:eu-repo/semantics/altIdentifier/doi/10.1107/S2053273317084777info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:46:17Zoai:ri.conicet.gov.ar:11336/65349instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:46:17.708CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Low molecular weight amino acid-based derivatives: from organogels to single crystals and mesocrystals
title Low molecular weight amino acid-based derivatives: from organogels to single crystals and mesocrystals
spellingShingle Low molecular weight amino acid-based derivatives: from organogels to single crystals and mesocrystals
Di Salvo, Florencia
AMINO ACIDS
MESOCRYSTALS
SUPRAMOLECULAR ORGANOGELS
title_short Low molecular weight amino acid-based derivatives: from organogels to single crystals and mesocrystals
title_full Low molecular weight amino acid-based derivatives: from organogels to single crystals and mesocrystals
title_fullStr Low molecular weight amino acid-based derivatives: from organogels to single crystals and mesocrystals
title_full_unstemmed Low molecular weight amino acid-based derivatives: from organogels to single crystals and mesocrystals
title_sort Low molecular weight amino acid-based derivatives: from organogels to single crystals and mesocrystals
dc.creator.none.fl_str_mv Di Salvo, Florencia
Movilla, Federico
Reynares, Juan Manuel
Sanchez Montilva, Olga Carolina
author Di Salvo, Florencia
author_facet Di Salvo, Florencia
Movilla, Federico
Reynares, Juan Manuel
Sanchez Montilva, Olga Carolina
author_role author
author2 Movilla, Federico
Reynares, Juan Manuel
Sanchez Montilva, Olga Carolina
author2_role author
author
author
dc.subject.none.fl_str_mv AMINO ACIDS
MESOCRYSTALS
SUPRAMOLECULAR ORGANOGELS
topic AMINO ACIDS
MESOCRYSTALS
SUPRAMOLECULAR ORGANOGELS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Amino acids are able to self-assemble into ordered superstructures, also called mesocrystals, when they are subjected to certain crystallisation conditions such as, pH, supersaturation level and the use of additives, being the last one the most popular strategy [1, 2]. Besides, self-assembly strategies applied to low-molecular weight building blocks can conduct to supramolecular gels. Their properties can be modulated by variation of temperature or solvent, since these changes directly affect the strength of the non-covalent interactions within the gel network [3]. The obtaining of both, supramolecular gels or crystalline materials, is governed by the presence of non-covalent interactions, resulting in spanning network that can immobilise solvents for the first ones or, the self-assembly between the building blocks, to give place to the others. Thus, there is a delicate balance for a low-weight molecule to behave as a gelator or crystal. Herein, we present a new family of chiral L-amino-acid-based low-weight molecules which behave as excellent building blocks for the construction of supramolecular gels or crystalline structures. Compounds 1-3 are obtained as zwitterions after the reaction between piperonal and L-Alanine, L-Phenylalanine and L-Tyrosine, respectively. Crystallisation experiments using organic solvents are only possible with dilute solutions of the amino acid derivatives due to their low solubility. Compounds 1 and 3 conduct mainly to polycrystalline materials and 2 gives place to crystalline superstructures with spherical morphologies, results attributed to the different solubility and supramolecular properties conferred by the amino acid bone. All derivatives are soluble in basic media after the deprotonation of the zwitterion. After a slow evaporation of the solvent of the basic solutions, spherical-like mesocrystals are obtained. Due to their structural features, compounds 1-3 are also soluble in acids. After slow diffusion of hydrogen chloride vapours in basic solutions of 2, single crystals suitable for XRD studies are obtained. The crystallographic results confirm the presence of the protonated derivative. Although 1 and 3 do not give place to crystals of suitable quality under the same conditions, experiments using other acids are in progress. In order to increase the solubility of compounds 1-3 in their zwitterionic form in organic solvents, the temperature of the solutions can be increased. Only the derivative of phenylalanine is soluble in higher concentrations after increasing the temperature and then after cooling, it gives place to supramolecular gels. The reversibility of the gelification process with temperature is also observed. In conclusion, it is possible to suggest that the presence and directionality of certain functional groups and the intermolecular interactions developed, such as the existence or not of the OH and the phenyl group, are key factors in the mechanism of self-assembly into hierarchical structures, single crystals or even supramolecular organogels. Furthermore, the strong pH dependence allows the obtaining of single crystals or the assembly to crystalline superstructures. This new family of low-molecular-mass derivatives shows a huge versatility regarding supramolecular properties. Varying the aldehyde and/or the amino acid opens a broad perspective for the design of novel self-assembly architectures for the further development of functional soft and/or crystalline materials. Rferences[1] Jiang, H. et al. (2011). Cryst. Growth Des., 11, 3243?3249, and references therein. [2] Ejgenberg, M. & Mastai, Y. (2012). Cryst. Growth Des., 12, 4995−5001. [3] Buerkle, L.E. & Rowan, S.J. (2012). Chem. Soc. Rev., 41, 6089?6102.
Fil: Di Salvo, Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; Argentina
Fil: Movilla, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; Argentina
Fil: Reynares, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; Argentina
Fil: Sanchez Montilva, Olga Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; Argentina
description Amino acids are able to self-assemble into ordered superstructures, also called mesocrystals, when they are subjected to certain crystallisation conditions such as, pH, supersaturation level and the use of additives, being the last one the most popular strategy [1, 2]. Besides, self-assembly strategies applied to low-molecular weight building blocks can conduct to supramolecular gels. Their properties can be modulated by variation of temperature or solvent, since these changes directly affect the strength of the non-covalent interactions within the gel network [3]. The obtaining of both, supramolecular gels or crystalline materials, is governed by the presence of non-covalent interactions, resulting in spanning network that can immobilise solvents for the first ones or, the self-assembly between the building blocks, to give place to the others. Thus, there is a delicate balance for a low-weight molecule to behave as a gelator or crystal. Herein, we present a new family of chiral L-amino-acid-based low-weight molecules which behave as excellent building blocks for the construction of supramolecular gels or crystalline structures. Compounds 1-3 are obtained as zwitterions after the reaction between piperonal and L-Alanine, L-Phenylalanine and L-Tyrosine, respectively. Crystallisation experiments using organic solvents are only possible with dilute solutions of the amino acid derivatives due to their low solubility. Compounds 1 and 3 conduct mainly to polycrystalline materials and 2 gives place to crystalline superstructures with spherical morphologies, results attributed to the different solubility and supramolecular properties conferred by the amino acid bone. All derivatives are soluble in basic media after the deprotonation of the zwitterion. After a slow evaporation of the solvent of the basic solutions, spherical-like mesocrystals are obtained. Due to their structural features, compounds 1-3 are also soluble in acids. After slow diffusion of hydrogen chloride vapours in basic solutions of 2, single crystals suitable for XRD studies are obtained. The crystallographic results confirm the presence of the protonated derivative. Although 1 and 3 do not give place to crystals of suitable quality under the same conditions, experiments using other acids are in progress. In order to increase the solubility of compounds 1-3 in their zwitterionic form in organic solvents, the temperature of the solutions can be increased. Only the derivative of phenylalanine is soluble in higher concentrations after increasing the temperature and then after cooling, it gives place to supramolecular gels. The reversibility of the gelification process with temperature is also observed. In conclusion, it is possible to suggest that the presence and directionality of certain functional groups and the intermolecular interactions developed, such as the existence or not of the OH and the phenyl group, are key factors in the mechanism of self-assembly into hierarchical structures, single crystals or even supramolecular organogels. Furthermore, the strong pH dependence allows the obtaining of single crystals or the assembly to crystalline superstructures. This new family of low-molecular-mass derivatives shows a huge versatility regarding supramolecular properties. Varying the aldehyde and/or the amino acid opens a broad perspective for the design of novel self-assembly architectures for the further development of functional soft and/or crystalline materials. Rferences[1] Jiang, H. et al. (2011). Cryst. Growth Des., 11, 3243?3249, and references therein. [2] Ejgenberg, M. & Mastai, Y. (2012). Cryst. Growth Des., 12, 4995−5001. [3] Buerkle, L.E. & Rowan, S.J. (2012). Chem. Soc. Rev., 41, 6089?6102.
publishDate 2017
dc.date.none.fl_str_mv 2017-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/65349
Di Salvo, Florencia; Movilla, Federico; Reynares, Juan Manuel; Sanchez Montilva, Olga Carolina; Low molecular weight amino acid-based derivatives: from organogels to single crystals and mesocrystals; International Union of Crystallography; Acta Crystallographica Section A Foundations and Advances; 73; a2; 12-2017; C1097-C1097
2053-2733
CONICET Digital
CONICET
url http://hdl.handle.net/11336/65349
identifier_str_mv Di Salvo, Florencia; Movilla, Federico; Reynares, Juan Manuel; Sanchez Montilva, Olga Carolina; Low molecular weight amino acid-based derivatives: from organogels to single crystals and mesocrystals; International Union of Crystallography; Acta Crystallographica Section A Foundations and Advances; 73; a2; 12-2017; C1097-C1097
2053-2733
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://scripts.iucr.org/cgi-bin/paper?S2053273317084777
info:eu-repo/semantics/altIdentifier/doi/10.1107/S2053273317084777
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv International Union of Crystallography
publisher.none.fl_str_mv International Union of Crystallography
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614504313257984
score 13.070432