Real‐Time Non‐Faradaic Potentiodynamic Impedance Sensing Using Screen‐Printed Carbon Electrodes

Autores
Fuhry, Emil; Guglielmotti, Victoria; Wachta, Isabell; Pallarola, Diego Andres; Balasubramanian, Kannan
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Electrochemical impedance spectroscopy (EIS) is a suitable analytical technique to detectinterfacial phenomena and analyte binding at electrode surfaces. In contrast to metallicelectrodes, carbon-based electrodes are more suited due to the low cost and the availability ofmore versatile methods for chemical functionalization. For (bio) sensing, often the Faradaicversion of EIS in a three-electrode configuration is used, where a redox-active species is usedas a marker. In order to avoid interference due to the redox-active marker with the interfacialinteraction, we focus here on the use of non-Faradaic EIS in the absence of any added markers.First, we utilize the sedimentation of silica beads as a model system, which reduces thecomplexity of the interaction simplifying the interpretation of the measured signals. Moreover,we introduce two improvements. First, impedance measurements are performed in a threeelectrodeconfiguration with applied potential as an additional variable, which serves as ahandle to optimize the sensitivity. Secondly, we present a time-differential strategy to detectsubtle changes and demonstrate that we can consistently follow the sedimentation of beadsusing the non-Faradaic impedance as a function of the applied potential. Finally, we show aproof-of-principle demonstration for the biosensing of cell attachment on the electrodes in realtimeusing the proposed technique.
Fil: Fuhry, Emil. Humboldt-Universität zu Berlin; Alemania
Fil: Guglielmotti, Victoria. Humboldt-Universität zu Berlin; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Martin. Instituto de Nanosistemas; Argentina
Fil: Wachta, Isabell. Humboldt-Universität zu Berlin; Alemania
Fil: Pallarola, Diego Andres. Universidad Nacional de San Martin. Instituto de Nanosistemas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Balasubramanian, Kannan. Humboldt-Universität zu Berlin; Alemania
Materia
POINT OF ZERO CHARGE
CAPACITIVE SENSORS
ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY
CELL SENSING
ELECTRIC CELL-SUBSTRATE IMPEDANCE SENSING
POTENTIODYNAMIC
SCREENPRINTED ELECTRODES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/241317

id CONICETDig_675d4a8118db8918663284be06b16168
oai_identifier_str oai:ri.conicet.gov.ar:11336/241317
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Real‐Time Non‐Faradaic Potentiodynamic Impedance Sensing Using Screen‐Printed Carbon ElectrodesFuhry, EmilGuglielmotti, VictoriaWachta, IsabellPallarola, Diego AndresBalasubramanian, KannanPOINT OF ZERO CHARGECAPACITIVE SENSORSELECTROCHEMICAL IMPEDANCE SPECTROSCOPYCELL SENSINGELECTRIC CELL-SUBSTRATE IMPEDANCE SENSINGPOTENTIODYNAMICSCREENPRINTED ELECTRODEShttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Electrochemical impedance spectroscopy (EIS) is a suitable analytical technique to detectinterfacial phenomena and analyte binding at electrode surfaces. In contrast to metallicelectrodes, carbon-based electrodes are more suited due to the low cost and the availability ofmore versatile methods for chemical functionalization. For (bio) sensing, often the Faradaicversion of EIS in a three-electrode configuration is used, where a redox-active species is usedas a marker. In order to avoid interference due to the redox-active marker with the interfacialinteraction, we focus here on the use of non-Faradaic EIS in the absence of any added markers.First, we utilize the sedimentation of silica beads as a model system, which reduces thecomplexity of the interaction simplifying the interpretation of the measured signals. Moreover,we introduce two improvements. First, impedance measurements are performed in a threeelectrodeconfiguration with applied potential as an additional variable, which serves as ahandle to optimize the sensitivity. Secondly, we present a time-differential strategy to detectsubtle changes and demonstrate that we can consistently follow the sedimentation of beadsusing the non-Faradaic impedance as a function of the applied potential. Finally, we show aproof-of-principle demonstration for the biosensing of cell attachment on the electrodes in realtimeusing the proposed technique.Fil: Fuhry, Emil. Humboldt-Universität zu Berlin; AlemaniaFil: Guglielmotti, Victoria. Humboldt-Universität zu Berlin; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Martin. Instituto de Nanosistemas; ArgentinaFil: Wachta, Isabell. Humboldt-Universität zu Berlin; AlemaniaFil: Pallarola, Diego Andres. Universidad Nacional de San Martin. Instituto de Nanosistemas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Balasubramanian, Kannan. Humboldt-Universität zu Berlin; AlemaniaWiley2024-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/241317Fuhry, Emil; Guglielmotti, Victoria; Wachta, Isabell; Pallarola, Diego Andres; Balasubramanian, Kannan; Real‐Time Non‐Faradaic Potentiodynamic Impedance Sensing Using Screen‐Printed Carbon Electrodes; Wiley; Analysis & Sensing; 6-2024; 1-222629-2742CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/anse.202400037info:eu-repo/semantics/altIdentifier/doi/10.1002/anse.202400037info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:44:46Zoai:ri.conicet.gov.ar:11336/241317instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:44:46.784CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Real‐Time Non‐Faradaic Potentiodynamic Impedance Sensing Using Screen‐Printed Carbon Electrodes
title Real‐Time Non‐Faradaic Potentiodynamic Impedance Sensing Using Screen‐Printed Carbon Electrodes
spellingShingle Real‐Time Non‐Faradaic Potentiodynamic Impedance Sensing Using Screen‐Printed Carbon Electrodes
Fuhry, Emil
POINT OF ZERO CHARGE
CAPACITIVE SENSORS
ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY
CELL SENSING
ELECTRIC CELL-SUBSTRATE IMPEDANCE SENSING
POTENTIODYNAMIC
SCREENPRINTED ELECTRODES
title_short Real‐Time Non‐Faradaic Potentiodynamic Impedance Sensing Using Screen‐Printed Carbon Electrodes
title_full Real‐Time Non‐Faradaic Potentiodynamic Impedance Sensing Using Screen‐Printed Carbon Electrodes
title_fullStr Real‐Time Non‐Faradaic Potentiodynamic Impedance Sensing Using Screen‐Printed Carbon Electrodes
title_full_unstemmed Real‐Time Non‐Faradaic Potentiodynamic Impedance Sensing Using Screen‐Printed Carbon Electrodes
title_sort Real‐Time Non‐Faradaic Potentiodynamic Impedance Sensing Using Screen‐Printed Carbon Electrodes
dc.creator.none.fl_str_mv Fuhry, Emil
Guglielmotti, Victoria
Wachta, Isabell
Pallarola, Diego Andres
Balasubramanian, Kannan
author Fuhry, Emil
author_facet Fuhry, Emil
Guglielmotti, Victoria
Wachta, Isabell
Pallarola, Diego Andres
Balasubramanian, Kannan
author_role author
author2 Guglielmotti, Victoria
Wachta, Isabell
Pallarola, Diego Andres
Balasubramanian, Kannan
author2_role author
author
author
author
dc.subject.none.fl_str_mv POINT OF ZERO CHARGE
CAPACITIVE SENSORS
ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY
CELL SENSING
ELECTRIC CELL-SUBSTRATE IMPEDANCE SENSING
POTENTIODYNAMIC
SCREENPRINTED ELECTRODES
topic POINT OF ZERO CHARGE
CAPACITIVE SENSORS
ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY
CELL SENSING
ELECTRIC CELL-SUBSTRATE IMPEDANCE SENSING
POTENTIODYNAMIC
SCREENPRINTED ELECTRODES
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Electrochemical impedance spectroscopy (EIS) is a suitable analytical technique to detectinterfacial phenomena and analyte binding at electrode surfaces. In contrast to metallicelectrodes, carbon-based electrodes are more suited due to the low cost and the availability ofmore versatile methods for chemical functionalization. For (bio) sensing, often the Faradaicversion of EIS in a three-electrode configuration is used, where a redox-active species is usedas a marker. In order to avoid interference due to the redox-active marker with the interfacialinteraction, we focus here on the use of non-Faradaic EIS in the absence of any added markers.First, we utilize the sedimentation of silica beads as a model system, which reduces thecomplexity of the interaction simplifying the interpretation of the measured signals. Moreover,we introduce two improvements. First, impedance measurements are performed in a threeelectrodeconfiguration with applied potential as an additional variable, which serves as ahandle to optimize the sensitivity. Secondly, we present a time-differential strategy to detectsubtle changes and demonstrate that we can consistently follow the sedimentation of beadsusing the non-Faradaic impedance as a function of the applied potential. Finally, we show aproof-of-principle demonstration for the biosensing of cell attachment on the electrodes in realtimeusing the proposed technique.
Fil: Fuhry, Emil. Humboldt-Universität zu Berlin; Alemania
Fil: Guglielmotti, Victoria. Humboldt-Universität zu Berlin; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Martin. Instituto de Nanosistemas; Argentina
Fil: Wachta, Isabell. Humboldt-Universität zu Berlin; Alemania
Fil: Pallarola, Diego Andres. Universidad Nacional de San Martin. Instituto de Nanosistemas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Balasubramanian, Kannan. Humboldt-Universität zu Berlin; Alemania
description Electrochemical impedance spectroscopy (EIS) is a suitable analytical technique to detectinterfacial phenomena and analyte binding at electrode surfaces. In contrast to metallicelectrodes, carbon-based electrodes are more suited due to the low cost and the availability ofmore versatile methods for chemical functionalization. For (bio) sensing, often the Faradaicversion of EIS in a three-electrode configuration is used, where a redox-active species is usedas a marker. In order to avoid interference due to the redox-active marker with the interfacialinteraction, we focus here on the use of non-Faradaic EIS in the absence of any added markers.First, we utilize the sedimentation of silica beads as a model system, which reduces thecomplexity of the interaction simplifying the interpretation of the measured signals. Moreover,we introduce two improvements. First, impedance measurements are performed in a threeelectrodeconfiguration with applied potential as an additional variable, which serves as ahandle to optimize the sensitivity. Secondly, we present a time-differential strategy to detectsubtle changes and demonstrate that we can consistently follow the sedimentation of beadsusing the non-Faradaic impedance as a function of the applied potential. Finally, we show aproof-of-principle demonstration for the biosensing of cell attachment on the electrodes in realtimeusing the proposed technique.
publishDate 2024
dc.date.none.fl_str_mv 2024-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/241317
Fuhry, Emil; Guglielmotti, Victoria; Wachta, Isabell; Pallarola, Diego Andres; Balasubramanian, Kannan; Real‐Time Non‐Faradaic Potentiodynamic Impedance Sensing Using Screen‐Printed Carbon Electrodes; Wiley; Analysis & Sensing; 6-2024; 1-22
2629-2742
CONICET Digital
CONICET
url http://hdl.handle.net/11336/241317
identifier_str_mv Fuhry, Emil; Guglielmotti, Victoria; Wachta, Isabell; Pallarola, Diego Andres; Balasubramanian, Kannan; Real‐Time Non‐Faradaic Potentiodynamic Impedance Sensing Using Screen‐Printed Carbon Electrodes; Wiley; Analysis & Sensing; 6-2024; 1-22
2629-2742
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/anse.202400037
info:eu-repo/semantics/altIdentifier/doi/10.1002/anse.202400037
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Wiley
publisher.none.fl_str_mv Wiley
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613408910999552
score 13.070432