Predicting the minimum control time of quantum protocols with artificial neural networks
- Autores
- Sevitz, Sofia; Mirkin, Nicolás; Wisniacki, Diego Ariel
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Quantum control relies on the driving of quantum states without the loss of coherence, thus the leakage of quantum properties into the environment over time is a fundamental challenge. One work-around is to implement fast protocols, hence the Minimal Control Time (MCT) is of upmost importance. Here, we employ a machine learning network in order to estimate the MCT in a state transfer protocol. An unsupervised learning approach is considered by using a combination of an autoencoder network with the k-means clustering tool. The Landau–Zener (LZ) Hamiltonian is analyzed given that it has an analytical MCT and a distinctive topology change in the control landscape when the total evolution time is either under or over the MCT. We obtain that the network is able to not only produce an estimation of the MCT but also gains an understanding of the landscape’s topologies. Similar results are found for the generalized LZ Hamiltonian while limitations to our very simple architecture were encountered.
Fil: Sevitz, Sofia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
Fil: Mirkin, Nicolás. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
Fil: Wisniacki, Diego Ariel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina - Materia
-
Control cuantico
Inteligencia artificial
tiempo minimo - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/254914
Ver los metadatos del registro completo
id |
CONICETDig_673f410e0e47c0898e1aee6ed879d270 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/254914 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Predicting the minimum control time of quantum protocols with artificial neural networksSevitz, SofiaMirkin, NicolásWisniacki, Diego ArielControl cuanticoInteligencia artificialtiempo minimohttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Quantum control relies on the driving of quantum states without the loss of coherence, thus the leakage of quantum properties into the environment over time is a fundamental challenge. One work-around is to implement fast protocols, hence the Minimal Control Time (MCT) is of upmost importance. Here, we employ a machine learning network in order to estimate the MCT in a state transfer protocol. An unsupervised learning approach is considered by using a combination of an autoencoder network with the k-means clustering tool. The Landau–Zener (LZ) Hamiltonian is analyzed given that it has an analytical MCT and a distinctive topology change in the control landscape when the total evolution time is either under or over the MCT. We obtain that the network is able to not only produce an estimation of the MCT but also gains an understanding of the landscape’s topologies. Similar results are found for the generalized LZ Hamiltonian while limitations to our very simple architecture were encountered.Fil: Sevitz, Sofia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaFil: Mirkin, Nicolás. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaFil: Wisniacki, Diego Ariel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaIOP Publishing2023-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/254914Sevitz, Sofia; Mirkin, Nicolás; Wisniacki, Diego Ariel; Predicting the minimum control time of quantum protocols with artificial neural networks; IOP Publishing; Quantum Science and Technology; 8; 3; 6-2023; 1-142058-9565CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/2058-9565/acd579info:eu-repo/semantics/altIdentifier/doi/10.1088/2058-9565/acd579info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:08:25Zoai:ri.conicet.gov.ar:11336/254914instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:08:25.4CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Predicting the minimum control time of quantum protocols with artificial neural networks |
title |
Predicting the minimum control time of quantum protocols with artificial neural networks |
spellingShingle |
Predicting the minimum control time of quantum protocols with artificial neural networks Sevitz, Sofia Control cuantico Inteligencia artificial tiempo minimo |
title_short |
Predicting the minimum control time of quantum protocols with artificial neural networks |
title_full |
Predicting the minimum control time of quantum protocols with artificial neural networks |
title_fullStr |
Predicting the minimum control time of quantum protocols with artificial neural networks |
title_full_unstemmed |
Predicting the minimum control time of quantum protocols with artificial neural networks |
title_sort |
Predicting the minimum control time of quantum protocols with artificial neural networks |
dc.creator.none.fl_str_mv |
Sevitz, Sofia Mirkin, Nicolás Wisniacki, Diego Ariel |
author |
Sevitz, Sofia |
author_facet |
Sevitz, Sofia Mirkin, Nicolás Wisniacki, Diego Ariel |
author_role |
author |
author2 |
Mirkin, Nicolás Wisniacki, Diego Ariel |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Control cuantico Inteligencia artificial tiempo minimo |
topic |
Control cuantico Inteligencia artificial tiempo minimo |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Quantum control relies on the driving of quantum states without the loss of coherence, thus the leakage of quantum properties into the environment over time is a fundamental challenge. One work-around is to implement fast protocols, hence the Minimal Control Time (MCT) is of upmost importance. Here, we employ a machine learning network in order to estimate the MCT in a state transfer protocol. An unsupervised learning approach is considered by using a combination of an autoencoder network with the k-means clustering tool. The Landau–Zener (LZ) Hamiltonian is analyzed given that it has an analytical MCT and a distinctive topology change in the control landscape when the total evolution time is either under or over the MCT. We obtain that the network is able to not only produce an estimation of the MCT but also gains an understanding of the landscape’s topologies. Similar results are found for the generalized LZ Hamiltonian while limitations to our very simple architecture were encountered. Fil: Sevitz, Sofia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina Fil: Mirkin, Nicolás. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina Fil: Wisniacki, Diego Ariel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina |
description |
Quantum control relies on the driving of quantum states without the loss of coherence, thus the leakage of quantum properties into the environment over time is a fundamental challenge. One work-around is to implement fast protocols, hence the Minimal Control Time (MCT) is of upmost importance. Here, we employ a machine learning network in order to estimate the MCT in a state transfer protocol. An unsupervised learning approach is considered by using a combination of an autoencoder network with the k-means clustering tool. The Landau–Zener (LZ) Hamiltonian is analyzed given that it has an analytical MCT and a distinctive topology change in the control landscape when the total evolution time is either under or over the MCT. We obtain that the network is able to not only produce an estimation of the MCT but also gains an understanding of the landscape’s topologies. Similar results are found for the generalized LZ Hamiltonian while limitations to our very simple architecture were encountered. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/254914 Sevitz, Sofia; Mirkin, Nicolás; Wisniacki, Diego Ariel; Predicting the minimum control time of quantum protocols with artificial neural networks; IOP Publishing; Quantum Science and Technology; 8; 3; 6-2023; 1-14 2058-9565 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/254914 |
identifier_str_mv |
Sevitz, Sofia; Mirkin, Nicolás; Wisniacki, Diego Ariel; Predicting the minimum control time of quantum protocols with artificial neural networks; IOP Publishing; Quantum Science and Technology; 8; 3; 6-2023; 1-14 2058-9565 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/2058-9565/acd579 info:eu-repo/semantics/altIdentifier/doi/10.1088/2058-9565/acd579 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
IOP Publishing |
publisher.none.fl_str_mv |
IOP Publishing |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846781416375844864 |
score |
13.229304 |