Long Signaling Cascades Tend to Attenuate Retroactivity

Autores
Ossareh, Hamid R.; Ventura, Alejandra; Merajver, Sofia D.; Del Vecchio, Domitilla
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Signaling pathways consisting of phosphorylation/dephosphorylation cycles with no explicit feedback allow signals to propagate not only from upstream to downstream but also from downstream to upstream due to retroactivity at the interconnection between phosphorylation/dephosphorylation cycles. However, the extent to which a downstream perturbation can propagate upstream in a signaling cascade and the parameters that affect this propagation are presently unknown. Here, we determine the downstream-to-upstream steady-state gain at each stage of the signaling cascade as a function of the cascade parameters. This gain can be made smaller than 1 (attenuation) by sufficiently fast kinase rates compared to the phosphatase rates and/or by sufficiently large Michaelis-Menten constants and sufficiently low amounts of total stage protein. Numerical studies performed on sets of biologically relevant parameters indicated that ∼50% of these parameters could give rise to amplification of the downstream perturbation at some stage in a three-stage cascade. In an n-stage cascade, the percentage of parameters that lead to an overall attenuation from the last stage to the first stage monotonically increases with the cascade length n and reaches 100% for cascades of length at least 6.
Fil: Ossareh, Hamid R.. University of Michigan; Estados Unidos
Fil: Ventura, Alejandra. University of Michigan; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires; Argentina
Fil: Merajver, Sofia D.. University of Michigan; Estados Unidos
Fil: Del Vecchio, Domitilla. Massachusetts Institute of Technology; Estados Unidos
Materia
Signaling Pathways
Retroactivity
Attenuation
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/20366

id CONICETDig_66e5731ce3854638632306b6ace0703a
oai_identifier_str oai:ri.conicet.gov.ar:11336/20366
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Long Signaling Cascades Tend to Attenuate RetroactivityOssareh, Hamid R.Ventura, AlejandraMerajver, Sofia D.Del Vecchio, DomitillaSignaling PathwaysRetroactivityAttenuationhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Signaling pathways consisting of phosphorylation/dephosphorylation cycles with no explicit feedback allow signals to propagate not only from upstream to downstream but also from downstream to upstream due to retroactivity at the interconnection between phosphorylation/dephosphorylation cycles. However, the extent to which a downstream perturbation can propagate upstream in a signaling cascade and the parameters that affect this propagation are presently unknown. Here, we determine the downstream-to-upstream steady-state gain at each stage of the signaling cascade as a function of the cascade parameters. This gain can be made smaller than 1 (attenuation) by sufficiently fast kinase rates compared to the phosphatase rates and/or by sufficiently large Michaelis-Menten constants and sufficiently low amounts of total stage protein. Numerical studies performed on sets of biologically relevant parameters indicated that ∼50% of these parameters could give rise to amplification of the downstream perturbation at some stage in a three-stage cascade. In an n-stage cascade, the percentage of parameters that lead to an overall attenuation from the last stage to the first stage monotonically increases with the cascade length n and reaches 100% for cascades of length at least 6.Fil: Ossareh, Hamid R.. University of Michigan; Estados UnidosFil: Ventura, Alejandra. University of Michigan; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires; ArgentinaFil: Merajver, Sofia D.. University of Michigan; Estados UnidosFil: Del Vecchio, Domitilla. Massachusetts Institute of Technology; Estados UnidosCell Press2011-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/20366Ossareh, Hamid R.; Ventura, Alejandra; Merajver, Sofia D.; Del Vecchio, Domitilla; Long Signaling Cascades Tend to Attenuate Retroactivity; Cell Press; Biophysical Journal; 100; 7; 4-2011; 1617-16260006-3495CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.bpj.2011.02.014info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0006349511002311info:eu-repo/semantics/altIdentifier/url/https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3072653/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:19:00Zoai:ri.conicet.gov.ar:11336/20366instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:19:00.767CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Long Signaling Cascades Tend to Attenuate Retroactivity
title Long Signaling Cascades Tend to Attenuate Retroactivity
spellingShingle Long Signaling Cascades Tend to Attenuate Retroactivity
Ossareh, Hamid R.
Signaling Pathways
Retroactivity
Attenuation
title_short Long Signaling Cascades Tend to Attenuate Retroactivity
title_full Long Signaling Cascades Tend to Attenuate Retroactivity
title_fullStr Long Signaling Cascades Tend to Attenuate Retroactivity
title_full_unstemmed Long Signaling Cascades Tend to Attenuate Retroactivity
title_sort Long Signaling Cascades Tend to Attenuate Retroactivity
dc.creator.none.fl_str_mv Ossareh, Hamid R.
Ventura, Alejandra
Merajver, Sofia D.
Del Vecchio, Domitilla
author Ossareh, Hamid R.
author_facet Ossareh, Hamid R.
Ventura, Alejandra
Merajver, Sofia D.
Del Vecchio, Domitilla
author_role author
author2 Ventura, Alejandra
Merajver, Sofia D.
Del Vecchio, Domitilla
author2_role author
author
author
dc.subject.none.fl_str_mv Signaling Pathways
Retroactivity
Attenuation
topic Signaling Pathways
Retroactivity
Attenuation
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Signaling pathways consisting of phosphorylation/dephosphorylation cycles with no explicit feedback allow signals to propagate not only from upstream to downstream but also from downstream to upstream due to retroactivity at the interconnection between phosphorylation/dephosphorylation cycles. However, the extent to which a downstream perturbation can propagate upstream in a signaling cascade and the parameters that affect this propagation are presently unknown. Here, we determine the downstream-to-upstream steady-state gain at each stage of the signaling cascade as a function of the cascade parameters. This gain can be made smaller than 1 (attenuation) by sufficiently fast kinase rates compared to the phosphatase rates and/or by sufficiently large Michaelis-Menten constants and sufficiently low amounts of total stage protein. Numerical studies performed on sets of biologically relevant parameters indicated that ∼50% of these parameters could give rise to amplification of the downstream perturbation at some stage in a three-stage cascade. In an n-stage cascade, the percentage of parameters that lead to an overall attenuation from the last stage to the first stage monotonically increases with the cascade length n and reaches 100% for cascades of length at least 6.
Fil: Ossareh, Hamid R.. University of Michigan; Estados Unidos
Fil: Ventura, Alejandra. University of Michigan; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires; Argentina
Fil: Merajver, Sofia D.. University of Michigan; Estados Unidos
Fil: Del Vecchio, Domitilla. Massachusetts Institute of Technology; Estados Unidos
description Signaling pathways consisting of phosphorylation/dephosphorylation cycles with no explicit feedback allow signals to propagate not only from upstream to downstream but also from downstream to upstream due to retroactivity at the interconnection between phosphorylation/dephosphorylation cycles. However, the extent to which a downstream perturbation can propagate upstream in a signaling cascade and the parameters that affect this propagation are presently unknown. Here, we determine the downstream-to-upstream steady-state gain at each stage of the signaling cascade as a function of the cascade parameters. This gain can be made smaller than 1 (attenuation) by sufficiently fast kinase rates compared to the phosphatase rates and/or by sufficiently large Michaelis-Menten constants and sufficiently low amounts of total stage protein. Numerical studies performed on sets of biologically relevant parameters indicated that ∼50% of these parameters could give rise to amplification of the downstream perturbation at some stage in a three-stage cascade. In an n-stage cascade, the percentage of parameters that lead to an overall attenuation from the last stage to the first stage monotonically increases with the cascade length n and reaches 100% for cascades of length at least 6.
publishDate 2011
dc.date.none.fl_str_mv 2011-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/20366
Ossareh, Hamid R.; Ventura, Alejandra; Merajver, Sofia D.; Del Vecchio, Domitilla; Long Signaling Cascades Tend to Attenuate Retroactivity; Cell Press; Biophysical Journal; 100; 7; 4-2011; 1617-1626
0006-3495
CONICET Digital
CONICET
url http://hdl.handle.net/11336/20366
identifier_str_mv Ossareh, Hamid R.; Ventura, Alejandra; Merajver, Sofia D.; Del Vecchio, Domitilla; Long Signaling Cascades Tend to Attenuate Retroactivity; Cell Press; Biophysical Journal; 100; 7; 4-2011; 1617-1626
0006-3495
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.bpj.2011.02.014
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0006349511002311
info:eu-repo/semantics/altIdentifier/url/https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3072653/
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Cell Press
publisher.none.fl_str_mv Cell Press
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083338783162368
score 13.22299