Large-pore mesoporous silica: template design, thin film preparation and biomolecules infiltration
- Autores
- Alberti, Sebastián; Schmidt, Sonja; Hageneder, Simone; Angelome, Paula Cecilia; Soler Illia, Galo Juan de Avila Arturo; Vana, Philipp; Dostalek, Jakub; Azzaroni, Omar; Knoll, Wolfgang
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Nanopores have been applied in the development of artificial biocatalytic systems, controlled drug delivery, and solid-state sensing devices. The interaction of biomacromolecules with surfaces show a dependence on the nanopore diameter, crucial in their ability to infiltrate porous materials. In this context, ordered mesoporous materials obtained by evaporation-induced self-assembly are model materials to test pore-biomolecule interactions. Nevertheless, these materials are generally restricted to pore diameters within the 2-10 nm range, therefore, new polymers as templating agents hold potential to provide an easy reproducible route for the synthesis of mesoporous silica thin films (MTF) with pore diameters above 10 nm without the use of swelling or additional structuring agents. Here, we present a novel and simple approach towards large pore MTF through the combination of supramolecular templating and phase separation with tailor-made block co-polymers. Accurate tuning of the oxide pore size distribution (with small mesopores between 13-18 nm diameter) is achieved by controlling the length and the nature of the hydrophilic polymer block used as a template through a simple reversible addition-fragmentation chain transfer (RAFT) polymerization approach. The importance of these features is highlighted by showing the capability that these new materials offer for biomolecule infiltration benchmarked against the widespread MTF prepared using pluronic F127 as a template. Effect of protein to pore diameter ratio, protein location and effect of pH and ionic strength is briefly tested and discussed.
Fil: Alberti, Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina
Fil: Schmidt, Sonja. Universität Göttingen; Alemania
Fil: Hageneder, Simone. Austrian Institute Of Technology; Austria
Fil: Angelome, Paula Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Constituyentes | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Constituyentes; Argentina
Fil: Soler Illia, Galo Juan de Avila Arturo. Universidad Nacional de San Martin. Instituto de Nanosistemas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Vana, Philipp. Universität Göttingen; Alemania
Fil: Dostalek, Jakub. Austrian Institute Of Technology; Austria
Fil: Azzaroni, Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina
Fil: Knoll, Wolfgang. Austrian Institute Of Technology; Austria - Materia
-
RAFT POLYMERIZATION
POROUS MATERIALS
THIN FILMS
PROTEIN INFILTRATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/228546
Ver los metadatos del registro completo
id |
CONICETDig_6660ecc36bd7be0296279d762245a33d |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/228546 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Large-pore mesoporous silica: template design, thin film preparation and biomolecules infiltrationAlberti, SebastiánSchmidt, SonjaHageneder, SimoneAngelome, Paula CeciliaSoler Illia, Galo Juan de Avila ArturoVana, PhilippDostalek, JakubAzzaroni, OmarKnoll, WolfgangRAFT POLYMERIZATIONPOROUS MATERIALSTHIN FILMSPROTEIN INFILTRATIONhttps://purl.org/becyt/ford/2.10https://purl.org/becyt/ford/2Nanopores have been applied in the development of artificial biocatalytic systems, controlled drug delivery, and solid-state sensing devices. The interaction of biomacromolecules with surfaces show a dependence on the nanopore diameter, crucial in their ability to infiltrate porous materials. In this context, ordered mesoporous materials obtained by evaporation-induced self-assembly are model materials to test pore-biomolecule interactions. Nevertheless, these materials are generally restricted to pore diameters within the 2-10 nm range, therefore, new polymers as templating agents hold potential to provide an easy reproducible route for the synthesis of mesoporous silica thin films (MTF) with pore diameters above 10 nm without the use of swelling or additional structuring agents. Here, we present a novel and simple approach towards large pore MTF through the combination of supramolecular templating and phase separation with tailor-made block co-polymers. Accurate tuning of the oxide pore size distribution (with small mesopores between 13-18 nm diameter) is achieved by controlling the length and the nature of the hydrophilic polymer block used as a template through a simple reversible addition-fragmentation chain transfer (RAFT) polymerization approach. The importance of these features is highlighted by showing the capability that these new materials offer for biomolecule infiltration benchmarked against the widespread MTF prepared using pluronic F127 as a template. Effect of protein to pore diameter ratio, protein location and effect of pH and ionic strength is briefly tested and discussed.Fil: Alberti, Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Schmidt, Sonja. Universität Göttingen; AlemaniaFil: Hageneder, Simone. Austrian Institute Of Technology; AustriaFil: Angelome, Paula Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Constituyentes | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Constituyentes; ArgentinaFil: Soler Illia, Galo Juan de Avila Arturo. Universidad Nacional de San Martin. Instituto de Nanosistemas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Vana, Philipp. Universität Göttingen; AlemaniaFil: Dostalek, Jakub. Austrian Institute Of Technology; AustriaFil: Azzaroni, Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Knoll, Wolfgang. Austrian Institute Of Technology; AustriaRoyal Society of Chemistry2023-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/228546Alberti, Sebastián; Schmidt, Sonja; Hageneder, Simone; Angelome, Paula Cecilia; Soler Illia, Galo Juan de Avila Arturo; et al.; Large-pore mesoporous silica: template design, thin film preparation and biomolecules infiltration; Royal Society of Chemistry; Materials Chemistry Frontiers; 7; 18; 7-2023; 4142-41512052-1537CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://pubs.rsc.org/en/Content/ArticleLanding/2023/QM/D3QM00378Ginfo:eu-repo/semantics/altIdentifier/doi/10.1039/D3QM00378Ginfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:57:53Zoai:ri.conicet.gov.ar:11336/228546instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:57:53.592CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Large-pore mesoporous silica: template design, thin film preparation and biomolecules infiltration |
title |
Large-pore mesoporous silica: template design, thin film preparation and biomolecules infiltration |
spellingShingle |
Large-pore mesoporous silica: template design, thin film preparation and biomolecules infiltration Alberti, Sebastián RAFT POLYMERIZATION POROUS MATERIALS THIN FILMS PROTEIN INFILTRATION |
title_short |
Large-pore mesoporous silica: template design, thin film preparation and biomolecules infiltration |
title_full |
Large-pore mesoporous silica: template design, thin film preparation and biomolecules infiltration |
title_fullStr |
Large-pore mesoporous silica: template design, thin film preparation and biomolecules infiltration |
title_full_unstemmed |
Large-pore mesoporous silica: template design, thin film preparation and biomolecules infiltration |
title_sort |
Large-pore mesoporous silica: template design, thin film preparation and biomolecules infiltration |
dc.creator.none.fl_str_mv |
Alberti, Sebastián Schmidt, Sonja Hageneder, Simone Angelome, Paula Cecilia Soler Illia, Galo Juan de Avila Arturo Vana, Philipp Dostalek, Jakub Azzaroni, Omar Knoll, Wolfgang |
author |
Alberti, Sebastián |
author_facet |
Alberti, Sebastián Schmidt, Sonja Hageneder, Simone Angelome, Paula Cecilia Soler Illia, Galo Juan de Avila Arturo Vana, Philipp Dostalek, Jakub Azzaroni, Omar Knoll, Wolfgang |
author_role |
author |
author2 |
Schmidt, Sonja Hageneder, Simone Angelome, Paula Cecilia Soler Illia, Galo Juan de Avila Arturo Vana, Philipp Dostalek, Jakub Azzaroni, Omar Knoll, Wolfgang |
author2_role |
author author author author author author author author |
dc.subject.none.fl_str_mv |
RAFT POLYMERIZATION POROUS MATERIALS THIN FILMS PROTEIN INFILTRATION |
topic |
RAFT POLYMERIZATION POROUS MATERIALS THIN FILMS PROTEIN INFILTRATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.10 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Nanopores have been applied in the development of artificial biocatalytic systems, controlled drug delivery, and solid-state sensing devices. The interaction of biomacromolecules with surfaces show a dependence on the nanopore diameter, crucial in their ability to infiltrate porous materials. In this context, ordered mesoporous materials obtained by evaporation-induced self-assembly are model materials to test pore-biomolecule interactions. Nevertheless, these materials are generally restricted to pore diameters within the 2-10 nm range, therefore, new polymers as templating agents hold potential to provide an easy reproducible route for the synthesis of mesoporous silica thin films (MTF) with pore diameters above 10 nm without the use of swelling or additional structuring agents. Here, we present a novel and simple approach towards large pore MTF through the combination of supramolecular templating and phase separation with tailor-made block co-polymers. Accurate tuning of the oxide pore size distribution (with small mesopores between 13-18 nm diameter) is achieved by controlling the length and the nature of the hydrophilic polymer block used as a template through a simple reversible addition-fragmentation chain transfer (RAFT) polymerization approach. The importance of these features is highlighted by showing the capability that these new materials offer for biomolecule infiltration benchmarked against the widespread MTF prepared using pluronic F127 as a template. Effect of protein to pore diameter ratio, protein location and effect of pH and ionic strength is briefly tested and discussed. Fil: Alberti, Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina Fil: Schmidt, Sonja. Universität Göttingen; Alemania Fil: Hageneder, Simone. Austrian Institute Of Technology; Austria Fil: Angelome, Paula Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Constituyentes | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Constituyentes; Argentina Fil: Soler Illia, Galo Juan de Avila Arturo. Universidad Nacional de San Martin. Instituto de Nanosistemas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Vana, Philipp. Universität Göttingen; Alemania Fil: Dostalek, Jakub. Austrian Institute Of Technology; Austria Fil: Azzaroni, Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina Fil: Knoll, Wolfgang. Austrian Institute Of Technology; Austria |
description |
Nanopores have been applied in the development of artificial biocatalytic systems, controlled drug delivery, and solid-state sensing devices. The interaction of biomacromolecules with surfaces show a dependence on the nanopore diameter, crucial in their ability to infiltrate porous materials. In this context, ordered mesoporous materials obtained by evaporation-induced self-assembly are model materials to test pore-biomolecule interactions. Nevertheless, these materials are generally restricted to pore diameters within the 2-10 nm range, therefore, new polymers as templating agents hold potential to provide an easy reproducible route for the synthesis of mesoporous silica thin films (MTF) with pore diameters above 10 nm without the use of swelling or additional structuring agents. Here, we present a novel and simple approach towards large pore MTF through the combination of supramolecular templating and phase separation with tailor-made block co-polymers. Accurate tuning of the oxide pore size distribution (with small mesopores between 13-18 nm diameter) is achieved by controlling the length and the nature of the hydrophilic polymer block used as a template through a simple reversible addition-fragmentation chain transfer (RAFT) polymerization approach. The importance of these features is highlighted by showing the capability that these new materials offer for biomolecule infiltration benchmarked against the widespread MTF prepared using pluronic F127 as a template. Effect of protein to pore diameter ratio, protein location and effect of pH and ionic strength is briefly tested and discussed. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/228546 Alberti, Sebastián; Schmidt, Sonja; Hageneder, Simone; Angelome, Paula Cecilia; Soler Illia, Galo Juan de Avila Arturo; et al.; Large-pore mesoporous silica: template design, thin film preparation and biomolecules infiltration; Royal Society of Chemistry; Materials Chemistry Frontiers; 7; 18; 7-2023; 4142-4151 2052-1537 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/228546 |
identifier_str_mv |
Alberti, Sebastián; Schmidt, Sonja; Hageneder, Simone; Angelome, Paula Cecilia; Soler Illia, Galo Juan de Avila Arturo; et al.; Large-pore mesoporous silica: template design, thin film preparation and biomolecules infiltration; Royal Society of Chemistry; Materials Chemistry Frontiers; 7; 18; 7-2023; 4142-4151 2052-1537 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://pubs.rsc.org/en/Content/ArticleLanding/2023/QM/D3QM00378G info:eu-repo/semantics/altIdentifier/doi/10.1039/D3QM00378G |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Royal Society of Chemistry |
publisher.none.fl_str_mv |
Royal Society of Chemistry |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083118286503936 |
score |
13.22299 |