Nanopartículas de ZnO puras y dopadas con metales de transición: estudio de la respuesta de fotoluminiscencia bajo exposición a vapor de etanol y de la actividad fotocatalítica

Autores
Cornet, Matias; Pais Ospina, Daniel Humberto; Comedi, David Mario; Tirado, Monica Cecilia; Marín Ramírez, Oscar Alonso
Año de publicación
2023
Idioma
español castellano
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
El óxido de zinc (ZnO) es un semiconductor II-VI que ha generado un creciente interés en las últimas décadas debido a sus prometedoras aplicaciones enelectrónica y óptica. Su amplio potencial se basa en su gap directo de 3,37 eV ysu robusta energía de ligadura excitónica de 60 meV, que le confieren una emisiónde luz sólida a temperatura ambiente. Esta emisión de luz está fuertemente influenciada por factores como la estructura de defectos y la superficie del material.La motivación para este estudio surgió a partir de resultados previos de nuestro grupo sobre la fotoluminiscencia de aglomerados de nanopartículas (NPs) deZnO, la cual mostró una dependencia no monótona del número de NPs, la potencia de excitación y la exposición a vapor de etanol [1]. Estos fenómenos fueronvinculados a la auto-absorción de los fotones emitidos y al equilibrio entre la recombinación excitónica dentro de NPs aisladas y la recombinación no radiativa através de estados superficiales o interfaciales. Con base en estos hallazgos, se decidió profundizar en el estudio de la emisión de luz en sistemas nanoestructurados,considerando el efecto del ambiente circundante y el tamaño de las estructurasque conforman el aglomerado.Para llevar a cabo el estudio, se fabricaron muestras que permitieran comprendermejor la influencia de las distintas variables en el comportamiento observado. Sesintetizaron polvos de micropartículas (MPs) de ZnO (∼ 1 µm) y polvos de NPs(∼ 20 nm) de ZnO, ZnO:Mn y ZnO:Cu (ambos al 1 % nominal) mediante síntesissolvotermal. El polvo de NPs de ZnO se dividió en tres grupos: uno sin modificar, otro sometido a calcinación en una atmósfera rica en oxígeno y un tercerocalcinado en una atmósfera rica en hidrógeno. Las muestras se caracterizaron mediante microscopía de barrido electrónico y espectroscopía Raman. Experimentosde absorbancia UV/vis permitieron estimar el borde de absorción y gap óptico delas muestras. Las mediciones de fotoluminiscencia (FL) se realizaron mediante laexcitación con un láser de HeCd (λ = 325 nm) de manera sucesiva; primero enaire atmosférico, luego durante la exposición de las muestras a vapor de etanol,y por último nuevamente en aire atmosférico. Para ello, los polvos se depositaronen pequeños sustratos de silicio mediante drop-coating, obteniendo sistemas con20 y 60 deposiciones de cada uno de los polvos.Los resultados revelaron que la FL del sistema formado por MPs apenas se vioafectada por la exposición al vapor orgánico. En cambio, el sistema formado porNPs mostró un notable aumento de la emisión UV y una disminución de la emisión visible durante la exposición. Además, los sistemas con mayor número dedeposiciones exhibieron una mayor respuesta a la presencia del vapor. La mejorrespuesta fue observada para el sistema de 60 deposiciones de ZnO:Cu en presencia de etanol, aumentando la señal 7 veces durante la exposición a eetanol enrelación a la medida en aire atmosférico. Por último, se observó que, en todoslos casos, después de detener las exposiciones al vapor de etanol, los sistemasrecuperaron su comportamiento original de FL. Estos resultados sugieren que la respuesta de la FL en sistemas granulares de ZnO al vapor de etanol está dominada por las modificaciones en las propiedades optoelectrónicas de las interfacespartícula/partícula, inducidas por las moléculas orgánicas incidentes.Tras obtener resultados prometedores en los estudios de FL, se procedió con laevaluación de la actividad fotocatalítica de las muestras utilizando azul de metileno como indicador. Los experimentos se realizaron empleando una solución deazul de metileno de concentración 5 mg/l, una concentración de fotocatalizadorde 300 mg/l, e iluminando con una lámpara comercial LED de λ = 365 nm y 3W de potencia durante un periodo de 75 minutos.El polvo de ZnO nanoparticulado mostró una eficiencia de degradación del 88 %.Sin embargo, los mejores resultados se obtuvieron para la muestra de ZnO calcinado en O2, la cual alcanzó una eficiencia del 90 % en la degradación del azul demetileno.
Fil: Cornet, Matias. Universidad Nacional de Tucumán. Instituto de Física del Noroeste Argentino. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto de Física del Noroeste Argentino; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Física; Argentina
Fil: Pais Ospina, Daniel Humberto. Universidad Nacional de Tucumán. Instituto de Física del Noroeste Argentino. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto de Física del Noroeste Argentino; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Física; Argentina
Fil: Comedi, David Mario. Universidad Nacional de Tucumán. Instituto de Física del Noroeste Argentino. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto de Física del Noroeste Argentino; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Física; Argentina
Fil: Tirado, Monica Cecilia. Universidad Nacional de Tucumán. Instituto de Física del Noroeste Argentino. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto de Física del Noroeste Argentino; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Física; Argentina
Fil: Marín Ramírez, Oscar Alonso. Universidad Nacional de Tucumán. Instituto de Física del Noroeste Argentino. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto de Física del Noroeste Argentino; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Física; Argentina
108º Reunión Asociación Física Argentina
Bahia Blanca
Argentina
Asociación Física Argentina
Materia
ZNO
FOTOLUMINISCENCIA
FOTOCATALISIS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/243571

id CONICETDig_6402cd0cec022e5c47824f3c31d0ad0d
oai_identifier_str oai:ri.conicet.gov.ar:11336/243571
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Nanopartículas de ZnO puras y dopadas con metales de transición: estudio de la respuesta de fotoluminiscencia bajo exposición a vapor de etanol y de la actividad fotocatalíticaCornet, MatiasPais Ospina, Daniel HumbertoComedi, David MarioTirado, Monica CeciliaMarín Ramírez, Oscar AlonsoZNOFOTOLUMINISCENCIAFOTOCATALISIShttps://purl.org/becyt/ford/2.10https://purl.org/becyt/ford/2El óxido de zinc (ZnO) es un semiconductor II-VI que ha generado un creciente interés en las últimas décadas debido a sus prometedoras aplicaciones enelectrónica y óptica. Su amplio potencial se basa en su gap directo de 3,37 eV ysu robusta energía de ligadura excitónica de 60 meV, que le confieren una emisiónde luz sólida a temperatura ambiente. Esta emisión de luz está fuertemente influenciada por factores como la estructura de defectos y la superficie del material.La motivación para este estudio surgió a partir de resultados previos de nuestro grupo sobre la fotoluminiscencia de aglomerados de nanopartículas (NPs) deZnO, la cual mostró una dependencia no monótona del número de NPs, la potencia de excitación y la exposición a vapor de etanol [1]. Estos fenómenos fueronvinculados a la auto-absorción de los fotones emitidos y al equilibrio entre la recombinación excitónica dentro de NPs aisladas y la recombinación no radiativa através de estados superficiales o interfaciales. Con base en estos hallazgos, se decidió profundizar en el estudio de la emisión de luz en sistemas nanoestructurados,considerando el efecto del ambiente circundante y el tamaño de las estructurasque conforman el aglomerado.Para llevar a cabo el estudio, se fabricaron muestras que permitieran comprendermejor la influencia de las distintas variables en el comportamiento observado. Sesintetizaron polvos de micropartículas (MPs) de ZnO (∼ 1 µm) y polvos de NPs(∼ 20 nm) de ZnO, ZnO:Mn y ZnO:Cu (ambos al 1 % nominal) mediante síntesissolvotermal. El polvo de NPs de ZnO se dividió en tres grupos: uno sin modificar, otro sometido a calcinación en una atmósfera rica en oxígeno y un tercerocalcinado en una atmósfera rica en hidrógeno. Las muestras se caracterizaron mediante microscopía de barrido electrónico y espectroscopía Raman. Experimentosde absorbancia UV/vis permitieron estimar el borde de absorción y gap óptico delas muestras. Las mediciones de fotoluminiscencia (FL) se realizaron mediante laexcitación con un láser de HeCd (λ = 325 nm) de manera sucesiva; primero enaire atmosférico, luego durante la exposición de las muestras a vapor de etanol,y por último nuevamente en aire atmosférico. Para ello, los polvos se depositaronen pequeños sustratos de silicio mediante drop-coating, obteniendo sistemas con20 y 60 deposiciones de cada uno de los polvos.Los resultados revelaron que la FL del sistema formado por MPs apenas se vioafectada por la exposición al vapor orgánico. En cambio, el sistema formado porNPs mostró un notable aumento de la emisión UV y una disminución de la emisión visible durante la exposición. Además, los sistemas con mayor número dedeposiciones exhibieron una mayor respuesta a la presencia del vapor. La mejorrespuesta fue observada para el sistema de 60 deposiciones de ZnO:Cu en presencia de etanol, aumentando la señal 7 veces durante la exposición a eetanol enrelación a la medida en aire atmosférico. Por último, se observó que, en todoslos casos, después de detener las exposiciones al vapor de etanol, los sistemasrecuperaron su comportamiento original de FL. Estos resultados sugieren que la respuesta de la FL en sistemas granulares de ZnO al vapor de etanol está dominada por las modificaciones en las propiedades optoelectrónicas de las interfacespartícula/partícula, inducidas por las moléculas orgánicas incidentes.Tras obtener resultados prometedores en los estudios de FL, se procedió con laevaluación de la actividad fotocatalítica de las muestras utilizando azul de metileno como indicador. Los experimentos se realizaron empleando una solución deazul de metileno de concentración 5 mg/l, una concentración de fotocatalizadorde 300 mg/l, e iluminando con una lámpara comercial LED de λ = 365 nm y 3W de potencia durante un periodo de 75 minutos.El polvo de ZnO nanoparticulado mostró una eficiencia de degradación del 88 %.Sin embargo, los mejores resultados se obtuvieron para la muestra de ZnO calcinado en O2, la cual alcanzó una eficiencia del 90 % en la degradación del azul demetileno.Fil: Cornet, Matias. Universidad Nacional de Tucumán. Instituto de Física del Noroeste Argentino. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto de Física del Noroeste Argentino; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Física; ArgentinaFil: Pais Ospina, Daniel Humberto. Universidad Nacional de Tucumán. Instituto de Física del Noroeste Argentino. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto de Física del Noroeste Argentino; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Física; ArgentinaFil: Comedi, David Mario. Universidad Nacional de Tucumán. Instituto de Física del Noroeste Argentino. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto de Física del Noroeste Argentino; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Física; ArgentinaFil: Tirado, Monica Cecilia. Universidad Nacional de Tucumán. Instituto de Física del Noroeste Argentino. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto de Física del Noroeste Argentino; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Física; ArgentinaFil: Marín Ramírez, Oscar Alonso. Universidad Nacional de Tucumán. Instituto de Física del Noroeste Argentino. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto de Física del Noroeste Argentino; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Física; Argentina108º Reunión Asociación Física ArgentinaBahia BlancaArgentinaAsociación Física ArgentinaAsociación Física Argentina2023info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectReuniónBookhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/243571Nanopartículas de ZnO puras y dopadas con metales de transición: estudio de la respuesta de fotoluminiscencia bajo exposición a vapor de etanol y de la actividad fotocatalítica; 108º Reunión Asociación Física Argentina; Bahia Blanca; Argentina; 2023; 367-369CONICET DigitalCONICETspainfo:eu-repo/semantics/altIdentifier/url/https://www.fisica.org.ar/actividades/rafas/libros-de-resumenes/Nacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:15:27Zoai:ri.conicet.gov.ar:11336/243571instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:15:27.379CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Nanopartículas de ZnO puras y dopadas con metales de transición: estudio de la respuesta de fotoluminiscencia bajo exposición a vapor de etanol y de la actividad fotocatalítica
title Nanopartículas de ZnO puras y dopadas con metales de transición: estudio de la respuesta de fotoluminiscencia bajo exposición a vapor de etanol y de la actividad fotocatalítica
spellingShingle Nanopartículas de ZnO puras y dopadas con metales de transición: estudio de la respuesta de fotoluminiscencia bajo exposición a vapor de etanol y de la actividad fotocatalítica
Cornet, Matias
ZNO
FOTOLUMINISCENCIA
FOTOCATALISIS
title_short Nanopartículas de ZnO puras y dopadas con metales de transición: estudio de la respuesta de fotoluminiscencia bajo exposición a vapor de etanol y de la actividad fotocatalítica
title_full Nanopartículas de ZnO puras y dopadas con metales de transición: estudio de la respuesta de fotoluminiscencia bajo exposición a vapor de etanol y de la actividad fotocatalítica
title_fullStr Nanopartículas de ZnO puras y dopadas con metales de transición: estudio de la respuesta de fotoluminiscencia bajo exposición a vapor de etanol y de la actividad fotocatalítica
title_full_unstemmed Nanopartículas de ZnO puras y dopadas con metales de transición: estudio de la respuesta de fotoluminiscencia bajo exposición a vapor de etanol y de la actividad fotocatalítica
title_sort Nanopartículas de ZnO puras y dopadas con metales de transición: estudio de la respuesta de fotoluminiscencia bajo exposición a vapor de etanol y de la actividad fotocatalítica
dc.creator.none.fl_str_mv Cornet, Matias
Pais Ospina, Daniel Humberto
Comedi, David Mario
Tirado, Monica Cecilia
Marín Ramírez, Oscar Alonso
author Cornet, Matias
author_facet Cornet, Matias
Pais Ospina, Daniel Humberto
Comedi, David Mario
Tirado, Monica Cecilia
Marín Ramírez, Oscar Alonso
author_role author
author2 Pais Ospina, Daniel Humberto
Comedi, David Mario
Tirado, Monica Cecilia
Marín Ramírez, Oscar Alonso
author2_role author
author
author
author
dc.subject.none.fl_str_mv ZNO
FOTOLUMINISCENCIA
FOTOCATALISIS
topic ZNO
FOTOLUMINISCENCIA
FOTOCATALISIS
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.10
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv El óxido de zinc (ZnO) es un semiconductor II-VI que ha generado un creciente interés en las últimas décadas debido a sus prometedoras aplicaciones enelectrónica y óptica. Su amplio potencial se basa en su gap directo de 3,37 eV ysu robusta energía de ligadura excitónica de 60 meV, que le confieren una emisiónde luz sólida a temperatura ambiente. Esta emisión de luz está fuertemente influenciada por factores como la estructura de defectos y la superficie del material.La motivación para este estudio surgió a partir de resultados previos de nuestro grupo sobre la fotoluminiscencia de aglomerados de nanopartículas (NPs) deZnO, la cual mostró una dependencia no monótona del número de NPs, la potencia de excitación y la exposición a vapor de etanol [1]. Estos fenómenos fueronvinculados a la auto-absorción de los fotones emitidos y al equilibrio entre la recombinación excitónica dentro de NPs aisladas y la recombinación no radiativa através de estados superficiales o interfaciales. Con base en estos hallazgos, se decidió profundizar en el estudio de la emisión de luz en sistemas nanoestructurados,considerando el efecto del ambiente circundante y el tamaño de las estructurasque conforman el aglomerado.Para llevar a cabo el estudio, se fabricaron muestras que permitieran comprendermejor la influencia de las distintas variables en el comportamiento observado. Sesintetizaron polvos de micropartículas (MPs) de ZnO (∼ 1 µm) y polvos de NPs(∼ 20 nm) de ZnO, ZnO:Mn y ZnO:Cu (ambos al 1 % nominal) mediante síntesissolvotermal. El polvo de NPs de ZnO se dividió en tres grupos: uno sin modificar, otro sometido a calcinación en una atmósfera rica en oxígeno y un tercerocalcinado en una atmósfera rica en hidrógeno. Las muestras se caracterizaron mediante microscopía de barrido electrónico y espectroscopía Raman. Experimentosde absorbancia UV/vis permitieron estimar el borde de absorción y gap óptico delas muestras. Las mediciones de fotoluminiscencia (FL) se realizaron mediante laexcitación con un láser de HeCd (λ = 325 nm) de manera sucesiva; primero enaire atmosférico, luego durante la exposición de las muestras a vapor de etanol,y por último nuevamente en aire atmosférico. Para ello, los polvos se depositaronen pequeños sustratos de silicio mediante drop-coating, obteniendo sistemas con20 y 60 deposiciones de cada uno de los polvos.Los resultados revelaron que la FL del sistema formado por MPs apenas se vioafectada por la exposición al vapor orgánico. En cambio, el sistema formado porNPs mostró un notable aumento de la emisión UV y una disminución de la emisión visible durante la exposición. Además, los sistemas con mayor número dedeposiciones exhibieron una mayor respuesta a la presencia del vapor. La mejorrespuesta fue observada para el sistema de 60 deposiciones de ZnO:Cu en presencia de etanol, aumentando la señal 7 veces durante la exposición a eetanol enrelación a la medida en aire atmosférico. Por último, se observó que, en todoslos casos, después de detener las exposiciones al vapor de etanol, los sistemasrecuperaron su comportamiento original de FL. Estos resultados sugieren que la respuesta de la FL en sistemas granulares de ZnO al vapor de etanol está dominada por las modificaciones en las propiedades optoelectrónicas de las interfacespartícula/partícula, inducidas por las moléculas orgánicas incidentes.Tras obtener resultados prometedores en los estudios de FL, se procedió con laevaluación de la actividad fotocatalítica de las muestras utilizando azul de metileno como indicador. Los experimentos se realizaron empleando una solución deazul de metileno de concentración 5 mg/l, una concentración de fotocatalizadorde 300 mg/l, e iluminando con una lámpara comercial LED de λ = 365 nm y 3W de potencia durante un periodo de 75 minutos.El polvo de ZnO nanoparticulado mostró una eficiencia de degradación del 88 %.Sin embargo, los mejores resultados se obtuvieron para la muestra de ZnO calcinado en O2, la cual alcanzó una eficiencia del 90 % en la degradación del azul demetileno.
Fil: Cornet, Matias. Universidad Nacional de Tucumán. Instituto de Física del Noroeste Argentino. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto de Física del Noroeste Argentino; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Física; Argentina
Fil: Pais Ospina, Daniel Humberto. Universidad Nacional de Tucumán. Instituto de Física del Noroeste Argentino. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto de Física del Noroeste Argentino; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Física; Argentina
Fil: Comedi, David Mario. Universidad Nacional de Tucumán. Instituto de Física del Noroeste Argentino. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto de Física del Noroeste Argentino; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Física; Argentina
Fil: Tirado, Monica Cecilia. Universidad Nacional de Tucumán. Instituto de Física del Noroeste Argentino. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto de Física del Noroeste Argentino; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Física; Argentina
Fil: Marín Ramírez, Oscar Alonso. Universidad Nacional de Tucumán. Instituto de Física del Noroeste Argentino. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto de Física del Noroeste Argentino; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Física; Argentina
108º Reunión Asociación Física Argentina
Bahia Blanca
Argentina
Asociación Física Argentina
description El óxido de zinc (ZnO) es un semiconductor II-VI que ha generado un creciente interés en las últimas décadas debido a sus prometedoras aplicaciones enelectrónica y óptica. Su amplio potencial se basa en su gap directo de 3,37 eV ysu robusta energía de ligadura excitónica de 60 meV, que le confieren una emisiónde luz sólida a temperatura ambiente. Esta emisión de luz está fuertemente influenciada por factores como la estructura de defectos y la superficie del material.La motivación para este estudio surgió a partir de resultados previos de nuestro grupo sobre la fotoluminiscencia de aglomerados de nanopartículas (NPs) deZnO, la cual mostró una dependencia no monótona del número de NPs, la potencia de excitación y la exposición a vapor de etanol [1]. Estos fenómenos fueronvinculados a la auto-absorción de los fotones emitidos y al equilibrio entre la recombinación excitónica dentro de NPs aisladas y la recombinación no radiativa através de estados superficiales o interfaciales. Con base en estos hallazgos, se decidió profundizar en el estudio de la emisión de luz en sistemas nanoestructurados,considerando el efecto del ambiente circundante y el tamaño de las estructurasque conforman el aglomerado.Para llevar a cabo el estudio, se fabricaron muestras que permitieran comprendermejor la influencia de las distintas variables en el comportamiento observado. Sesintetizaron polvos de micropartículas (MPs) de ZnO (∼ 1 µm) y polvos de NPs(∼ 20 nm) de ZnO, ZnO:Mn y ZnO:Cu (ambos al 1 % nominal) mediante síntesissolvotermal. El polvo de NPs de ZnO se dividió en tres grupos: uno sin modificar, otro sometido a calcinación en una atmósfera rica en oxígeno y un tercerocalcinado en una atmósfera rica en hidrógeno. Las muestras se caracterizaron mediante microscopía de barrido electrónico y espectroscopía Raman. Experimentosde absorbancia UV/vis permitieron estimar el borde de absorción y gap óptico delas muestras. Las mediciones de fotoluminiscencia (FL) se realizaron mediante laexcitación con un láser de HeCd (λ = 325 nm) de manera sucesiva; primero enaire atmosférico, luego durante la exposición de las muestras a vapor de etanol,y por último nuevamente en aire atmosférico. Para ello, los polvos se depositaronen pequeños sustratos de silicio mediante drop-coating, obteniendo sistemas con20 y 60 deposiciones de cada uno de los polvos.Los resultados revelaron que la FL del sistema formado por MPs apenas se vioafectada por la exposición al vapor orgánico. En cambio, el sistema formado porNPs mostró un notable aumento de la emisión UV y una disminución de la emisión visible durante la exposición. Además, los sistemas con mayor número dedeposiciones exhibieron una mayor respuesta a la presencia del vapor. La mejorrespuesta fue observada para el sistema de 60 deposiciones de ZnO:Cu en presencia de etanol, aumentando la señal 7 veces durante la exposición a eetanol enrelación a la medida en aire atmosférico. Por último, se observó que, en todoslos casos, después de detener las exposiciones al vapor de etanol, los sistemasrecuperaron su comportamiento original de FL. Estos resultados sugieren que la respuesta de la FL en sistemas granulares de ZnO al vapor de etanol está dominada por las modificaciones en las propiedades optoelectrónicas de las interfacespartícula/partícula, inducidas por las moléculas orgánicas incidentes.Tras obtener resultados prometedores en los estudios de FL, se procedió con laevaluación de la actividad fotocatalítica de las muestras utilizando azul de metileno como indicador. Los experimentos se realizaron empleando una solución deazul de metileno de concentración 5 mg/l, una concentración de fotocatalizadorde 300 mg/l, e iluminando con una lámpara comercial LED de λ = 365 nm y 3W de potencia durante un periodo de 75 minutos.El polvo de ZnO nanoparticulado mostró una eficiencia de degradación del 88 %.Sin embargo, los mejores resultados se obtuvieron para la muestra de ZnO calcinado en O2, la cual alcanzó una eficiencia del 90 % en la degradación del azul demetileno.
publishDate 2023
dc.date.none.fl_str_mv 2023
dc.type.none.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/conferenceObject
Reunión
Book
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
status_str publishedVersion
format conferenceObject
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/243571
Nanopartículas de ZnO puras y dopadas con metales de transición: estudio de la respuesta de fotoluminiscencia bajo exposición a vapor de etanol y de la actividad fotocatalítica; 108º Reunión Asociación Física Argentina; Bahia Blanca; Argentina; 2023; 367-369
CONICET Digital
CONICET
url http://hdl.handle.net/11336/243571
identifier_str_mv Nanopartículas de ZnO puras y dopadas con metales de transición: estudio de la respuesta de fotoluminiscencia bajo exposición a vapor de etanol y de la actividad fotocatalítica; 108º Reunión Asociación Física Argentina; Bahia Blanca; Argentina; 2023; 367-369
CONICET Digital
CONICET
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.fisica.org.ar/actividades/rafas/libros-de-resumenes/
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.coverage.none.fl_str_mv Nacional
dc.publisher.none.fl_str_mv Asociación Física Argentina
publisher.none.fl_str_mv Asociación Física Argentina
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842980832851001344
score 12.993085