New approach for approximating the continuum wave function by Gaussian basis set

Autores
Fiori, Marcelo Raúl; Miraglia, Jorge Esteban
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A new approach for approximating the continuum wave functions for hydrogenic atoms with Gaussians basis sets is developed and tested. In this the plane wave is left unchanged and the distorting factor, represented by the Confluent Hypergeometric function, is expanded as a sum of Spherical Harmonics multiplied by a series of Gaussians. In this way the number of spherical waves and Gaussians will be significantly reduced and the plane wave will be responsible for the momentum conservation. As compared with previous methods that expand the full continuum, including the plane wave, our strategy does not require a great quantity of partial waves for convergence. Dense oscillations which are characteristic of the plane wave, are avoided. To test the performance of this approximation to describe a free-bound atomic form factor, the ionization cross section of hydrogen by impact of protons in first Born approximation is calculated. Compared with the exact results, a good agreement with just 4 spherical waves and ten Gaussians each is obtained. The method looks very interesting, especially to speed up atomic and molecular collision calculations involving the continuum
Fil: Fiori, Marcelo Raúl. Universidad Nacional de Salta; Argentina
Fil: Miraglia, Jorge Esteban. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Materia
Wave Functions
Coulomb Functions
Minimization
Ionization
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/19534

id CONICETDig_62c4c484528cc52703517cf30689e4cf
oai_identifier_str oai:ri.conicet.gov.ar:11336/19534
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling New approach for approximating the continuum wave function by Gaussian basis setFiori, Marcelo RaúlMiraglia, Jorge EstebanWave FunctionsCoulomb FunctionsMinimizationIonizationhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1A new approach for approximating the continuum wave functions for hydrogenic atoms with Gaussians basis sets is developed and tested. In this the plane wave is left unchanged and the distorting factor, represented by the Confluent Hypergeometric function, is expanded as a sum of Spherical Harmonics multiplied by a series of Gaussians. In this way the number of spherical waves and Gaussians will be significantly reduced and the plane wave will be responsible for the momentum conservation. As compared with previous methods that expand the full continuum, including the plane wave, our strategy does not require a great quantity of partial waves for convergence. Dense oscillations which are characteristic of the plane wave, are avoided. To test the performance of this approximation to describe a free-bound atomic form factor, the ionization cross section of hydrogen by impact of protons in first Born approximation is calculated. Compared with the exact results, a good agreement with just 4 spherical waves and ten Gaussians each is obtained. The method looks very interesting, especially to speed up atomic and molecular collision calculations involving the continuumFil: Fiori, Marcelo Raúl. Universidad Nacional de Salta; ArgentinaFil: Miraglia, Jorge Esteban. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaElsevier Science2012-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/19534Fiori, Marcelo Raúl; Miraglia, Jorge Esteban; New approach for approximating the continuum wave function by Gaussian basis set; Elsevier Science; Computer Physics Communications; 183; 12; 12-2012; 2528-25340010-4655CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0010465512002299info:eu-repo/semantics/altIdentifier/doi/10.1016/j.cpc.2012.07.001info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:01:30Zoai:ri.conicet.gov.ar:11336/19534instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:01:31.257CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv New approach for approximating the continuum wave function by Gaussian basis set
title New approach for approximating the continuum wave function by Gaussian basis set
spellingShingle New approach for approximating the continuum wave function by Gaussian basis set
Fiori, Marcelo Raúl
Wave Functions
Coulomb Functions
Minimization
Ionization
title_short New approach for approximating the continuum wave function by Gaussian basis set
title_full New approach for approximating the continuum wave function by Gaussian basis set
title_fullStr New approach for approximating the continuum wave function by Gaussian basis set
title_full_unstemmed New approach for approximating the continuum wave function by Gaussian basis set
title_sort New approach for approximating the continuum wave function by Gaussian basis set
dc.creator.none.fl_str_mv Fiori, Marcelo Raúl
Miraglia, Jorge Esteban
author Fiori, Marcelo Raúl
author_facet Fiori, Marcelo Raúl
Miraglia, Jorge Esteban
author_role author
author2 Miraglia, Jorge Esteban
author2_role author
dc.subject.none.fl_str_mv Wave Functions
Coulomb Functions
Minimization
Ionization
topic Wave Functions
Coulomb Functions
Minimization
Ionization
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv A new approach for approximating the continuum wave functions for hydrogenic atoms with Gaussians basis sets is developed and tested. In this the plane wave is left unchanged and the distorting factor, represented by the Confluent Hypergeometric function, is expanded as a sum of Spherical Harmonics multiplied by a series of Gaussians. In this way the number of spherical waves and Gaussians will be significantly reduced and the plane wave will be responsible for the momentum conservation. As compared with previous methods that expand the full continuum, including the plane wave, our strategy does not require a great quantity of partial waves for convergence. Dense oscillations which are characteristic of the plane wave, are avoided. To test the performance of this approximation to describe a free-bound atomic form factor, the ionization cross section of hydrogen by impact of protons in first Born approximation is calculated. Compared with the exact results, a good agreement with just 4 spherical waves and ten Gaussians each is obtained. The method looks very interesting, especially to speed up atomic and molecular collision calculations involving the continuum
Fil: Fiori, Marcelo Raúl. Universidad Nacional de Salta; Argentina
Fil: Miraglia, Jorge Esteban. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
description A new approach for approximating the continuum wave functions for hydrogenic atoms with Gaussians basis sets is developed and tested. In this the plane wave is left unchanged and the distorting factor, represented by the Confluent Hypergeometric function, is expanded as a sum of Spherical Harmonics multiplied by a series of Gaussians. In this way the number of spherical waves and Gaussians will be significantly reduced and the plane wave will be responsible for the momentum conservation. As compared with previous methods that expand the full continuum, including the plane wave, our strategy does not require a great quantity of partial waves for convergence. Dense oscillations which are characteristic of the plane wave, are avoided. To test the performance of this approximation to describe a free-bound atomic form factor, the ionization cross section of hydrogen by impact of protons in first Born approximation is calculated. Compared with the exact results, a good agreement with just 4 spherical waves and ten Gaussians each is obtained. The method looks very interesting, especially to speed up atomic and molecular collision calculations involving the continuum
publishDate 2012
dc.date.none.fl_str_mv 2012-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/19534
Fiori, Marcelo Raúl; Miraglia, Jorge Esteban; New approach for approximating the continuum wave function by Gaussian basis set; Elsevier Science; Computer Physics Communications; 183; 12; 12-2012; 2528-2534
0010-4655
CONICET Digital
CONICET
url http://hdl.handle.net/11336/19534
identifier_str_mv Fiori, Marcelo Raúl; Miraglia, Jorge Esteban; New approach for approximating the continuum wave function by Gaussian basis set; Elsevier Science; Computer Physics Communications; 183; 12; 12-2012; 2528-2534
0010-4655
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0010465512002299
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.cpc.2012.07.001
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613809942036480
score 13.070432