Non-homogeneous solutions of a Coulomb Schrödinger equation as basis set for scattering problems

Autores
del Punta, Jessica Adriana; Ambrosio, Marcelo José; Gasaneo, Gustavo; Zaytsev, S.; Ancarani, L. U.
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We introduce and study two-body Quasi Sturmian functions which are proposed as basis functions for applications in three-body scattering problems. They are solutions of a two-body non-homogeneous Schrödinger equation. We present different analytic expressions including asymptotic behaviors for the pure Coulomb potential with a driven term involving either Slater-type or Laguerre-type orbitals. The efficiency of Quasi Sturmian functions as basis set is numerically illustrated through a two-body scattering problem.
Fil: del Punta, Jessica Adriana. Universidad Nacional del Sur. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Ambrosio, Marcelo José. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Fil: Gasaneo, Gustavo. Universidad Nacional del Sur. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Zaytsev, S.. Pacific National University; Rusia
Fil: Ancarani, L. U.. Universite de Lorraine; Francia
Materia
Quasi - sturmians
ionization
Coulomb
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/21404

id CONICETDig_360b986f53ed56bdf66690c8b4101aee
oai_identifier_str oai:ri.conicet.gov.ar:11336/21404
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Non-homogeneous solutions of a Coulomb Schrödinger equation as basis set for scattering problemsdel Punta, Jessica AdrianaAmbrosio, Marcelo JoséGasaneo, GustavoZaytsev, S.Ancarani, L. U.Quasi - sturmiansionizationCoulombhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We introduce and study two-body Quasi Sturmian functions which are proposed as basis functions for applications in three-body scattering problems. They are solutions of a two-body non-homogeneous Schrödinger equation. We present different analytic expressions including asymptotic behaviors for the pure Coulomb potential with a driven term involving either Slater-type or Laguerre-type orbitals. The efficiency of Quasi Sturmian functions as basis set is numerically illustrated through a two-body scattering problem.Fil: del Punta, Jessica Adriana. Universidad Nacional del Sur. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Ambrosio, Marcelo José. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Gasaneo, Gustavo. Universidad Nacional del Sur. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Zaytsev, S.. Pacific National University; RusiaFil: Ancarani, L. U.. Universite de Lorraine; FranciaAmerican Institute of Physics2014-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/21404del Punta, Jessica Adriana; Ambrosio, Marcelo José; Gasaneo, Gustavo; Zaytsev, S.; Ancarani, L. U.; Non-homogeneous solutions of a Coulomb Schrödinger equation as basis set for scattering problems; American Institute of Physics; Journal Of Mathematical Physics; 55; 5; 2-2014; 1-15; 0521010022-2488CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1063/1.4874115info:eu-repo/semantics/altIdentifier/url/http://aip.scitation.org/doi/10.1063/1.4874115info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:11:26Zoai:ri.conicet.gov.ar:11336/21404instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:11:26.736CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Non-homogeneous solutions of a Coulomb Schrödinger equation as basis set for scattering problems
title Non-homogeneous solutions of a Coulomb Schrödinger equation as basis set for scattering problems
spellingShingle Non-homogeneous solutions of a Coulomb Schrödinger equation as basis set for scattering problems
del Punta, Jessica Adriana
Quasi - sturmians
ionization
Coulomb
title_short Non-homogeneous solutions of a Coulomb Schrödinger equation as basis set for scattering problems
title_full Non-homogeneous solutions of a Coulomb Schrödinger equation as basis set for scattering problems
title_fullStr Non-homogeneous solutions of a Coulomb Schrödinger equation as basis set for scattering problems
title_full_unstemmed Non-homogeneous solutions of a Coulomb Schrödinger equation as basis set for scattering problems
title_sort Non-homogeneous solutions of a Coulomb Schrödinger equation as basis set for scattering problems
dc.creator.none.fl_str_mv del Punta, Jessica Adriana
Ambrosio, Marcelo José
Gasaneo, Gustavo
Zaytsev, S.
Ancarani, L. U.
author del Punta, Jessica Adriana
author_facet del Punta, Jessica Adriana
Ambrosio, Marcelo José
Gasaneo, Gustavo
Zaytsev, S.
Ancarani, L. U.
author_role author
author2 Ambrosio, Marcelo José
Gasaneo, Gustavo
Zaytsev, S.
Ancarani, L. U.
author2_role author
author
author
author
dc.subject.none.fl_str_mv Quasi - sturmians
ionization
Coulomb
topic Quasi - sturmians
ionization
Coulomb
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We introduce and study two-body Quasi Sturmian functions which are proposed as basis functions for applications in three-body scattering problems. They are solutions of a two-body non-homogeneous Schrödinger equation. We present different analytic expressions including asymptotic behaviors for the pure Coulomb potential with a driven term involving either Slater-type or Laguerre-type orbitals. The efficiency of Quasi Sturmian functions as basis set is numerically illustrated through a two-body scattering problem.
Fil: del Punta, Jessica Adriana. Universidad Nacional del Sur. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Ambrosio, Marcelo José. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Fil: Gasaneo, Gustavo. Universidad Nacional del Sur. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Zaytsev, S.. Pacific National University; Rusia
Fil: Ancarani, L. U.. Universite de Lorraine; Francia
description We introduce and study two-body Quasi Sturmian functions which are proposed as basis functions for applications in three-body scattering problems. They are solutions of a two-body non-homogeneous Schrödinger equation. We present different analytic expressions including asymptotic behaviors for the pure Coulomb potential with a driven term involving either Slater-type or Laguerre-type orbitals. The efficiency of Quasi Sturmian functions as basis set is numerically illustrated through a two-body scattering problem.
publishDate 2014
dc.date.none.fl_str_mv 2014-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/21404
del Punta, Jessica Adriana; Ambrosio, Marcelo José; Gasaneo, Gustavo; Zaytsev, S.; Ancarani, L. U.; Non-homogeneous solutions of a Coulomb Schrödinger equation as basis set for scattering problems; American Institute of Physics; Journal Of Mathematical Physics; 55; 5; 2-2014; 1-15; 052101
0022-2488
CONICET Digital
CONICET
url http://hdl.handle.net/11336/21404
identifier_str_mv del Punta, Jessica Adriana; Ambrosio, Marcelo José; Gasaneo, Gustavo; Zaytsev, S.; Ancarani, L. U.; Non-homogeneous solutions of a Coulomb Schrödinger equation as basis set for scattering problems; American Institute of Physics; Journal Of Mathematical Physics; 55; 5; 2-2014; 1-15; 052101
0022-2488
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1063/1.4874115
info:eu-repo/semantics/altIdentifier/url/http://aip.scitation.org/doi/10.1063/1.4874115
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Institute of Physics
publisher.none.fl_str_mv American Institute of Physics
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083262574755840
score 13.22299