Non-homogeneous solutions of a Coulomb Schrödinger equation as basis set for scattering problems
- Autores
- del Punta, Jessica Adriana; Ambrosio, Marcelo José; Gasaneo, Gustavo; Zaytsev, S.; Ancarani, L. U.
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We introduce and study two-body Quasi Sturmian functions which are proposed as basis functions for applications in three-body scattering problems. They are solutions of a two-body non-homogeneous Schrödinger equation. We present different analytic expressions including asymptotic behaviors for the pure Coulomb potential with a driven term involving either Slater-type or Laguerre-type orbitals. The efficiency of Quasi Sturmian functions as basis set is numerically illustrated through a two-body scattering problem.
Fil: del Punta, Jessica Adriana. Universidad Nacional del Sur. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Ambrosio, Marcelo José. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Fil: Gasaneo, Gustavo. Universidad Nacional del Sur. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Zaytsev, S.. Pacific National University; Rusia
Fil: Ancarani, L. U.. Universite de Lorraine; Francia - Materia
-
Quasi - sturmians
ionization
Coulomb - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/21404
Ver los metadatos del registro completo
id |
CONICETDig_360b986f53ed56bdf66690c8b4101aee |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/21404 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Non-homogeneous solutions of a Coulomb Schrödinger equation as basis set for scattering problemsdel Punta, Jessica AdrianaAmbrosio, Marcelo JoséGasaneo, GustavoZaytsev, S.Ancarani, L. U.Quasi - sturmiansionizationCoulombhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We introduce and study two-body Quasi Sturmian functions which are proposed as basis functions for applications in three-body scattering problems. They are solutions of a two-body non-homogeneous Schrödinger equation. We present different analytic expressions including asymptotic behaviors for the pure Coulomb potential with a driven term involving either Slater-type or Laguerre-type orbitals. The efficiency of Quasi Sturmian functions as basis set is numerically illustrated through a two-body scattering problem.Fil: del Punta, Jessica Adriana. Universidad Nacional del Sur. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Ambrosio, Marcelo José. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Gasaneo, Gustavo. Universidad Nacional del Sur. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Zaytsev, S.. Pacific National University; RusiaFil: Ancarani, L. U.. Universite de Lorraine; FranciaAmerican Institute of Physics2014-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/21404del Punta, Jessica Adriana; Ambrosio, Marcelo José; Gasaneo, Gustavo; Zaytsev, S.; Ancarani, L. U.; Non-homogeneous solutions of a Coulomb Schrödinger equation as basis set for scattering problems; American Institute of Physics; Journal Of Mathematical Physics; 55; 5; 2-2014; 1-15; 0521010022-2488CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1063/1.4874115info:eu-repo/semantics/altIdentifier/url/http://aip.scitation.org/doi/10.1063/1.4874115info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:11:26Zoai:ri.conicet.gov.ar:11336/21404instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:11:26.736CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Non-homogeneous solutions of a Coulomb Schrödinger equation as basis set for scattering problems |
title |
Non-homogeneous solutions of a Coulomb Schrödinger equation as basis set for scattering problems |
spellingShingle |
Non-homogeneous solutions of a Coulomb Schrödinger equation as basis set for scattering problems del Punta, Jessica Adriana Quasi - sturmians ionization Coulomb |
title_short |
Non-homogeneous solutions of a Coulomb Schrödinger equation as basis set for scattering problems |
title_full |
Non-homogeneous solutions of a Coulomb Schrödinger equation as basis set for scattering problems |
title_fullStr |
Non-homogeneous solutions of a Coulomb Schrödinger equation as basis set for scattering problems |
title_full_unstemmed |
Non-homogeneous solutions of a Coulomb Schrödinger equation as basis set for scattering problems |
title_sort |
Non-homogeneous solutions of a Coulomb Schrödinger equation as basis set for scattering problems |
dc.creator.none.fl_str_mv |
del Punta, Jessica Adriana Ambrosio, Marcelo José Gasaneo, Gustavo Zaytsev, S. Ancarani, L. U. |
author |
del Punta, Jessica Adriana |
author_facet |
del Punta, Jessica Adriana Ambrosio, Marcelo José Gasaneo, Gustavo Zaytsev, S. Ancarani, L. U. |
author_role |
author |
author2 |
Ambrosio, Marcelo José Gasaneo, Gustavo Zaytsev, S. Ancarani, L. U. |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Quasi - sturmians ionization Coulomb |
topic |
Quasi - sturmians ionization Coulomb |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We introduce and study two-body Quasi Sturmian functions which are proposed as basis functions for applications in three-body scattering problems. They are solutions of a two-body non-homogeneous Schrödinger equation. We present different analytic expressions including asymptotic behaviors for the pure Coulomb potential with a driven term involving either Slater-type or Laguerre-type orbitals. The efficiency of Quasi Sturmian functions as basis set is numerically illustrated through a two-body scattering problem. Fil: del Punta, Jessica Adriana. Universidad Nacional del Sur. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Ambrosio, Marcelo José. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina Fil: Gasaneo, Gustavo. Universidad Nacional del Sur. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Zaytsev, S.. Pacific National University; Rusia Fil: Ancarani, L. U.. Universite de Lorraine; Francia |
description |
We introduce and study two-body Quasi Sturmian functions which are proposed as basis functions for applications in three-body scattering problems. They are solutions of a two-body non-homogeneous Schrödinger equation. We present different analytic expressions including asymptotic behaviors for the pure Coulomb potential with a driven term involving either Slater-type or Laguerre-type orbitals. The efficiency of Quasi Sturmian functions as basis set is numerically illustrated through a two-body scattering problem. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/21404 del Punta, Jessica Adriana; Ambrosio, Marcelo José; Gasaneo, Gustavo; Zaytsev, S.; Ancarani, L. U.; Non-homogeneous solutions of a Coulomb Schrödinger equation as basis set for scattering problems; American Institute of Physics; Journal Of Mathematical Physics; 55; 5; 2-2014; 1-15; 052101 0022-2488 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/21404 |
identifier_str_mv |
del Punta, Jessica Adriana; Ambrosio, Marcelo José; Gasaneo, Gustavo; Zaytsev, S.; Ancarani, L. U.; Non-homogeneous solutions of a Coulomb Schrödinger equation as basis set for scattering problems; American Institute of Physics; Journal Of Mathematical Physics; 55; 5; 2-2014; 1-15; 052101 0022-2488 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1063/1.4874115 info:eu-repo/semantics/altIdentifier/url/http://aip.scitation.org/doi/10.1063/1.4874115 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Institute of Physics |
publisher.none.fl_str_mv |
American Institute of Physics |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083262574755840 |
score |
13.22299 |