The landscape of Arabidopsis tRNA aminoacylation

Autores
Ceriotti, Luis Federico; Warren, Jessica M.; Sánchez Puerta, María Virginia; Sloan, Daniel B.
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The function of transfer RNAs (tRNAs) depends on enzymes that cleave primary transcript ends, add a 30 CCA tail, introduce post-transcriptional base modifications, and charge (aminoacylate) mature tRNAs with the correct amino acid. Maintaining an available pool of the resulting aminoacylated tRNAs is essential for protein synthesis. High-throughput sequencing techniques have recently been developed to provide a com- prehensive view of aminoacylation state in a tRNA-specific fashion. However, these methods have never been applied to plants. Here, we treated Arabidopsis thaliana RNA samples with periodate and then per- formed tRNA-seq to distinguish between aminoacylated and uncharged tRNAs. This approach successfully captured every tRNA isodecoder family and detected expression of additional tRNA-like transcripts. We found that estimated aminoacylation rates and CCA tail integrity were significantly higher on average for organellar (mitochondrial and plastid) tRNAs than for nuclear/cytosolic tRNAs. Reanalysis of previously pub- lished human cell line data showed a similar pattern. Base modifications result in nucleotide misincorpora- tions and truncations during reverse transcription, which we quantified and used to test for relationships with aminoacylation levels. We also determined that the Arabidopsis tRNA-like sequences (t-elements) that are cleaved from the ends of some mitochondrial messenger RNAs have post-transcriptionally modified bases and CCA-tail addition. However, these t-elements are not aminoacylated, indicating that they are only recognized by a subset of tRNA-interacting enzymes and do not play a role in translation. Overall, this work provides a characterization of the baseline landscape of plant tRNA aminoacylation rates and demonstrates an approach for investigating environmental and genetic perturbations to plant translation machinery.
Fil: Ceriotti, Luis Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Biología Agrícola de Mendoza. Universidad Nacional de Cuyo. Facultad de Ciencias Agrarias. Instituto de Biología Agrícola de Mendoza; Argentina
Fil: Warren, Jessica M.. State University of Colorado - Fort Collins; Estados Unidos
Fil: Sánchez Puerta, María Virginia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Biología Agrícola de Mendoza. Universidad Nacional de Cuyo. Facultad de Ciencias Agrarias. Instituto de Biología Agrícola de Mendoza; Argentina
Fil: Sloan, Daniel B.. State University of Colorado - Fort Collins; Estados Unidos
Materia
MITOCHONDRIA
T-ELEMENTS
POST-TRANSCRIPTIONAL MODIFICATION
ARABIDOPSIS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/264089

id CONICETDig_61cdf2a11082fe6522ba4c5764c13d72
oai_identifier_str oai:ri.conicet.gov.ar:11336/264089
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling The landscape of Arabidopsis tRNA aminoacylationCeriotti, Luis FedericoWarren, Jessica M.Sánchez Puerta, María VirginiaSloan, Daniel B.MITOCHONDRIAT-ELEMENTSPOST-TRANSCRIPTIONAL MODIFICATIONARABIDOPSIShttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1The function of transfer RNAs (tRNAs) depends on enzymes that cleave primary transcript ends, add a 30 CCA tail, introduce post-transcriptional base modifications, and charge (aminoacylate) mature tRNAs with the correct amino acid. Maintaining an available pool of the resulting aminoacylated tRNAs is essential for protein synthesis. High-throughput sequencing techniques have recently been developed to provide a com- prehensive view of aminoacylation state in a tRNA-specific fashion. However, these methods have never been applied to plants. Here, we treated Arabidopsis thaliana RNA samples with periodate and then per- formed tRNA-seq to distinguish between aminoacylated and uncharged tRNAs. This approach successfully captured every tRNA isodecoder family and detected expression of additional tRNA-like transcripts. We found that estimated aminoacylation rates and CCA tail integrity were significantly higher on average for organellar (mitochondrial and plastid) tRNAs than for nuclear/cytosolic tRNAs. Reanalysis of previously pub- lished human cell line data showed a similar pattern. Base modifications result in nucleotide misincorpora- tions and truncations during reverse transcription, which we quantified and used to test for relationships with aminoacylation levels. We also determined that the Arabidopsis tRNA-like sequences (t-elements) that are cleaved from the ends of some mitochondrial messenger RNAs have post-transcriptionally modified bases and CCA-tail addition. However, these t-elements are not aminoacylated, indicating that they are only recognized by a subset of tRNA-interacting enzymes and do not play a role in translation. Overall, this work provides a characterization of the baseline landscape of plant tRNA aminoacylation rates and demonstrates an approach for investigating environmental and genetic perturbations to plant translation machinery.Fil: Ceriotti, Luis Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Biología Agrícola de Mendoza. Universidad Nacional de Cuyo. Facultad de Ciencias Agrarias. Instituto de Biología Agrícola de Mendoza; ArgentinaFil: Warren, Jessica M.. State University of Colorado - Fort Collins; Estados UnidosFil: Sánchez Puerta, María Virginia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Biología Agrícola de Mendoza. Universidad Nacional de Cuyo. Facultad de Ciencias Agrarias. Instituto de Biología Agrícola de Mendoza; ArgentinaFil: Sloan, Daniel B.. State University of Colorado - Fort Collins; Estados UnidosWiley Blackwell Publishing, Inc2024-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/264089Ceriotti, Luis Federico; Warren, Jessica M.; Sánchez Puerta, María Virginia; Sloan, Daniel B.; The landscape of Arabidopsis tRNA aminoacylation; Wiley Blackwell Publishing, Inc; Plant Journal; 120; 6; 11-2024; 2784-28020960-7412CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1111/tpj.17146info:eu-repo/semantics/altIdentifier/doi/10.1111/tpj.17146info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:24:46Zoai:ri.conicet.gov.ar:11336/264089instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:24:46.88CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv The landscape of Arabidopsis tRNA aminoacylation
title The landscape of Arabidopsis tRNA aminoacylation
spellingShingle The landscape of Arabidopsis tRNA aminoacylation
Ceriotti, Luis Federico
MITOCHONDRIA
T-ELEMENTS
POST-TRANSCRIPTIONAL MODIFICATION
ARABIDOPSIS
title_short The landscape of Arabidopsis tRNA aminoacylation
title_full The landscape of Arabidopsis tRNA aminoacylation
title_fullStr The landscape of Arabidopsis tRNA aminoacylation
title_full_unstemmed The landscape of Arabidopsis tRNA aminoacylation
title_sort The landscape of Arabidopsis tRNA aminoacylation
dc.creator.none.fl_str_mv Ceriotti, Luis Federico
Warren, Jessica M.
Sánchez Puerta, María Virginia
Sloan, Daniel B.
author Ceriotti, Luis Federico
author_facet Ceriotti, Luis Federico
Warren, Jessica M.
Sánchez Puerta, María Virginia
Sloan, Daniel B.
author_role author
author2 Warren, Jessica M.
Sánchez Puerta, María Virginia
Sloan, Daniel B.
author2_role author
author
author
dc.subject.none.fl_str_mv MITOCHONDRIA
T-ELEMENTS
POST-TRANSCRIPTIONAL MODIFICATION
ARABIDOPSIS
topic MITOCHONDRIA
T-ELEMENTS
POST-TRANSCRIPTIONAL MODIFICATION
ARABIDOPSIS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The function of transfer RNAs (tRNAs) depends on enzymes that cleave primary transcript ends, add a 30 CCA tail, introduce post-transcriptional base modifications, and charge (aminoacylate) mature tRNAs with the correct amino acid. Maintaining an available pool of the resulting aminoacylated tRNAs is essential for protein synthesis. High-throughput sequencing techniques have recently been developed to provide a com- prehensive view of aminoacylation state in a tRNA-specific fashion. However, these methods have never been applied to plants. Here, we treated Arabidopsis thaliana RNA samples with periodate and then per- formed tRNA-seq to distinguish between aminoacylated and uncharged tRNAs. This approach successfully captured every tRNA isodecoder family and detected expression of additional tRNA-like transcripts. We found that estimated aminoacylation rates and CCA tail integrity were significantly higher on average for organellar (mitochondrial and plastid) tRNAs than for nuclear/cytosolic tRNAs. Reanalysis of previously pub- lished human cell line data showed a similar pattern. Base modifications result in nucleotide misincorpora- tions and truncations during reverse transcription, which we quantified and used to test for relationships with aminoacylation levels. We also determined that the Arabidopsis tRNA-like sequences (t-elements) that are cleaved from the ends of some mitochondrial messenger RNAs have post-transcriptionally modified bases and CCA-tail addition. However, these t-elements are not aminoacylated, indicating that they are only recognized by a subset of tRNA-interacting enzymes and do not play a role in translation. Overall, this work provides a characterization of the baseline landscape of plant tRNA aminoacylation rates and demonstrates an approach for investigating environmental and genetic perturbations to plant translation machinery.
Fil: Ceriotti, Luis Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Biología Agrícola de Mendoza. Universidad Nacional de Cuyo. Facultad de Ciencias Agrarias. Instituto de Biología Agrícola de Mendoza; Argentina
Fil: Warren, Jessica M.. State University of Colorado - Fort Collins; Estados Unidos
Fil: Sánchez Puerta, María Virginia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Biología Agrícola de Mendoza. Universidad Nacional de Cuyo. Facultad de Ciencias Agrarias. Instituto de Biología Agrícola de Mendoza; Argentina
Fil: Sloan, Daniel B.. State University of Colorado - Fort Collins; Estados Unidos
description The function of transfer RNAs (tRNAs) depends on enzymes that cleave primary transcript ends, add a 30 CCA tail, introduce post-transcriptional base modifications, and charge (aminoacylate) mature tRNAs with the correct amino acid. Maintaining an available pool of the resulting aminoacylated tRNAs is essential for protein synthesis. High-throughput sequencing techniques have recently been developed to provide a com- prehensive view of aminoacylation state in a tRNA-specific fashion. However, these methods have never been applied to plants. Here, we treated Arabidopsis thaliana RNA samples with periodate and then per- formed tRNA-seq to distinguish between aminoacylated and uncharged tRNAs. This approach successfully captured every tRNA isodecoder family and detected expression of additional tRNA-like transcripts. We found that estimated aminoacylation rates and CCA tail integrity were significantly higher on average for organellar (mitochondrial and plastid) tRNAs than for nuclear/cytosolic tRNAs. Reanalysis of previously pub- lished human cell line data showed a similar pattern. Base modifications result in nucleotide misincorpora- tions and truncations during reverse transcription, which we quantified and used to test for relationships with aminoacylation levels. We also determined that the Arabidopsis tRNA-like sequences (t-elements) that are cleaved from the ends of some mitochondrial messenger RNAs have post-transcriptionally modified bases and CCA-tail addition. However, these t-elements are not aminoacylated, indicating that they are only recognized by a subset of tRNA-interacting enzymes and do not play a role in translation. Overall, this work provides a characterization of the baseline landscape of plant tRNA aminoacylation rates and demonstrates an approach for investigating environmental and genetic perturbations to plant translation machinery.
publishDate 2024
dc.date.none.fl_str_mv 2024-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/264089
Ceriotti, Luis Federico; Warren, Jessica M.; Sánchez Puerta, María Virginia; Sloan, Daniel B.; The landscape of Arabidopsis tRNA aminoacylation; Wiley Blackwell Publishing, Inc; Plant Journal; 120; 6; 11-2024; 2784-2802
0960-7412
CONICET Digital
CONICET
url http://hdl.handle.net/11336/264089
identifier_str_mv Ceriotti, Luis Federico; Warren, Jessica M.; Sánchez Puerta, María Virginia; Sloan, Daniel B.; The landscape of Arabidopsis tRNA aminoacylation; Wiley Blackwell Publishing, Inc; Plant Journal; 120; 6; 11-2024; 2784-2802
0960-7412
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1111/tpj.17146
info:eu-repo/semantics/altIdentifier/doi/10.1111/tpj.17146
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Wiley Blackwell Publishing, Inc
publisher.none.fl_str_mv Wiley Blackwell Publishing, Inc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842981376618397696
score 12.48226