Developmental and hypoxia-induced cell death share common ultrastructural and biochemical apoptotic features in the central nervous system
- Autores
- Pozo Devoto, Victorio Martin; Bogetti, Maria Eugenia; Fiszer, Sara
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Hypoxic insults during the perinatal period lead to motor and cognitive impairments that later appear during childhood. In the adult brain, hypoxic events often lead to necrotic neuronal death, depending on the region and intensity of the event. During development an active apoptotic cell death occurs and could be an important variable affecting the hypoxic insult outcome. In the present work we performed a comparative study, in a chick embryo model, of the phenotypes and molecular markers exhibited during developmental and hypoxic cell death (HxCD). Ultrastructural analysis of optic tectum cells of embryos subjected to hypoxia (8% O2, 60 min) revealed a clear apoptotic morphology that did not differ from the one exhibited during developmental cell death. Integrity of plasma membrane, condensation of chromatin in round well-defined bodies, and gradual shrinkage of the cell are all hallmarks of the apoptotic process and were present in both control and hypoxic cells. To elucidate if hypoxic and developmental cell deaths share a common mechanism we evaluated the activation of both intrinsic and extrinsic apoptotic pathways. A basal cleavage of caspase-9 and cytochrome c release was observed by co-immunofluorescence in control embryos, but hypoxic insult significantly increased the incidence of this colocalization. Caspase-8 cleavage remained unchanged after the hypoxic insult, suggesting that the extrinsic pathway would not be involved in hypoxic death. We also observed a significant decrease of Akt activation immediately after hypoxia, possibly facilitating the later release of cytochrome c. In addition we analyzed the influence of retinal ganglion cells (RGC) in neuronal survival. Transection of RGC fibers at embryonic day (ED) 3 did not induce any change in developmental and HxCD at ED12. In conclusion, our findings demonstrate that a hypoxic insult in the developing brain triggers the same apoptotic pathway as the active developmental death.
Fil: Pozo Devoto, Victorio Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencias "Profesor Eduardo de Robertis"; Argentina. Universidad de Buenos Aires. Facultad de Medicina; Argentina
Fil: Bogetti, Maria Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencias "Profesor Eduardo de Robertis"; Argentina. Universidad de Buenos Aires. Facultad de Medicina; Argentina
Fil: Fiszer, Sara. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencias "Profesor Eduardo de Robertis"; Argentina. Universidad de Buenos Aires. Facultad de Medicina; Argentina - Materia
-
Apoptosis
Hypoxia
Neuronal Death
Development
Chick Optic Tectum - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/12158
Ver los metadatos del registro completo
id |
CONICETDig_61803d8a7c4dca3a7affb7a1e13e5161 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/12158 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Developmental and hypoxia-induced cell death share common ultrastructural and biochemical apoptotic features in the central nervous systemPozo Devoto, Victorio MartinBogetti, Maria EugeniaFiszer, SaraApoptosisHypoxiaNeuronal DeathDevelopmentChick Optic Tectumhttps://purl.org/becyt/ford/3.1https://purl.org/becyt/ford/3Hypoxic insults during the perinatal period lead to motor and cognitive impairments that later appear during childhood. In the adult brain, hypoxic events often lead to necrotic neuronal death, depending on the region and intensity of the event. During development an active apoptotic cell death occurs and could be an important variable affecting the hypoxic insult outcome. In the present work we performed a comparative study, in a chick embryo model, of the phenotypes and molecular markers exhibited during developmental and hypoxic cell death (HxCD). Ultrastructural analysis of optic tectum cells of embryos subjected to hypoxia (8% O2, 60 min) revealed a clear apoptotic morphology that did not differ from the one exhibited during developmental cell death. Integrity of plasma membrane, condensation of chromatin in round well-defined bodies, and gradual shrinkage of the cell are all hallmarks of the apoptotic process and were present in both control and hypoxic cells. To elucidate if hypoxic and developmental cell deaths share a common mechanism we evaluated the activation of both intrinsic and extrinsic apoptotic pathways. A basal cleavage of caspase-9 and cytochrome c release was observed by co-immunofluorescence in control embryos, but hypoxic insult significantly increased the incidence of this colocalization. Caspase-8 cleavage remained unchanged after the hypoxic insult, suggesting that the extrinsic pathway would not be involved in hypoxic death. We also observed a significant decrease of Akt activation immediately after hypoxia, possibly facilitating the later release of cytochrome c. In addition we analyzed the influence of retinal ganglion cells (RGC) in neuronal survival. Transection of RGC fibers at embryonic day (ED) 3 did not induce any change in developmental and HxCD at ED12. In conclusion, our findings demonstrate that a hypoxic insult in the developing brain triggers the same apoptotic pathway as the active developmental death.Fil: Pozo Devoto, Victorio Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencias "Profesor Eduardo de Robertis"; Argentina. Universidad de Buenos Aires. Facultad de Medicina; ArgentinaFil: Bogetti, Maria Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencias "Profesor Eduardo de Robertis"; Argentina. Universidad de Buenos Aires. Facultad de Medicina; ArgentinaFil: Fiszer, Sara. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencias "Profesor Eduardo de Robertis"; Argentina. Universidad de Buenos Aires. Facultad de Medicina; ArgentinaElsevier2013-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/12158Pozo Devoto, Victorio Martin; Bogetti, Maria Eugenia; Fiszer, Sara; Developmental and hypoxia-induced cell death share common ultrastructural and biochemical apoptotic features in the central nervous system; Elsevier; Neuroscience; 252; 11-2013; 190-2000306-4522enginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.neuroscience.2013.07.065info:eu-repo/semantics/altIdentifier/ark/http://www.sciencedirect.com/science/article/pii/S0306452213006660info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:54:58Zoai:ri.conicet.gov.ar:11336/12158instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:54:58.445CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Developmental and hypoxia-induced cell death share common ultrastructural and biochemical apoptotic features in the central nervous system |
title |
Developmental and hypoxia-induced cell death share common ultrastructural and biochemical apoptotic features in the central nervous system |
spellingShingle |
Developmental and hypoxia-induced cell death share common ultrastructural and biochemical apoptotic features in the central nervous system Pozo Devoto, Victorio Martin Apoptosis Hypoxia Neuronal Death Development Chick Optic Tectum |
title_short |
Developmental and hypoxia-induced cell death share common ultrastructural and biochemical apoptotic features in the central nervous system |
title_full |
Developmental and hypoxia-induced cell death share common ultrastructural and biochemical apoptotic features in the central nervous system |
title_fullStr |
Developmental and hypoxia-induced cell death share common ultrastructural and biochemical apoptotic features in the central nervous system |
title_full_unstemmed |
Developmental and hypoxia-induced cell death share common ultrastructural and biochemical apoptotic features in the central nervous system |
title_sort |
Developmental and hypoxia-induced cell death share common ultrastructural and biochemical apoptotic features in the central nervous system |
dc.creator.none.fl_str_mv |
Pozo Devoto, Victorio Martin Bogetti, Maria Eugenia Fiszer, Sara |
author |
Pozo Devoto, Victorio Martin |
author_facet |
Pozo Devoto, Victorio Martin Bogetti, Maria Eugenia Fiszer, Sara |
author_role |
author |
author2 |
Bogetti, Maria Eugenia Fiszer, Sara |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Apoptosis Hypoxia Neuronal Death Development Chick Optic Tectum |
topic |
Apoptosis Hypoxia Neuronal Death Development Chick Optic Tectum |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/3.1 https://purl.org/becyt/ford/3 |
dc.description.none.fl_txt_mv |
Hypoxic insults during the perinatal period lead to motor and cognitive impairments that later appear during childhood. In the adult brain, hypoxic events often lead to necrotic neuronal death, depending on the region and intensity of the event. During development an active apoptotic cell death occurs and could be an important variable affecting the hypoxic insult outcome. In the present work we performed a comparative study, in a chick embryo model, of the phenotypes and molecular markers exhibited during developmental and hypoxic cell death (HxCD). Ultrastructural analysis of optic tectum cells of embryos subjected to hypoxia (8% O2, 60 min) revealed a clear apoptotic morphology that did not differ from the one exhibited during developmental cell death. Integrity of plasma membrane, condensation of chromatin in round well-defined bodies, and gradual shrinkage of the cell are all hallmarks of the apoptotic process and were present in both control and hypoxic cells. To elucidate if hypoxic and developmental cell deaths share a common mechanism we evaluated the activation of both intrinsic and extrinsic apoptotic pathways. A basal cleavage of caspase-9 and cytochrome c release was observed by co-immunofluorescence in control embryos, but hypoxic insult significantly increased the incidence of this colocalization. Caspase-8 cleavage remained unchanged after the hypoxic insult, suggesting that the extrinsic pathway would not be involved in hypoxic death. We also observed a significant decrease of Akt activation immediately after hypoxia, possibly facilitating the later release of cytochrome c. In addition we analyzed the influence of retinal ganglion cells (RGC) in neuronal survival. Transection of RGC fibers at embryonic day (ED) 3 did not induce any change in developmental and HxCD at ED12. In conclusion, our findings demonstrate that a hypoxic insult in the developing brain triggers the same apoptotic pathway as the active developmental death. Fil: Pozo Devoto, Victorio Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencias "Profesor Eduardo de Robertis"; Argentina. Universidad de Buenos Aires. Facultad de Medicina; Argentina Fil: Bogetti, Maria Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencias "Profesor Eduardo de Robertis"; Argentina. Universidad de Buenos Aires. Facultad de Medicina; Argentina Fil: Fiszer, Sara. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencias "Profesor Eduardo de Robertis"; Argentina. Universidad de Buenos Aires. Facultad de Medicina; Argentina |
description |
Hypoxic insults during the perinatal period lead to motor and cognitive impairments that later appear during childhood. In the adult brain, hypoxic events often lead to necrotic neuronal death, depending on the region and intensity of the event. During development an active apoptotic cell death occurs and could be an important variable affecting the hypoxic insult outcome. In the present work we performed a comparative study, in a chick embryo model, of the phenotypes and molecular markers exhibited during developmental and hypoxic cell death (HxCD). Ultrastructural analysis of optic tectum cells of embryos subjected to hypoxia (8% O2, 60 min) revealed a clear apoptotic morphology that did not differ from the one exhibited during developmental cell death. Integrity of plasma membrane, condensation of chromatin in round well-defined bodies, and gradual shrinkage of the cell are all hallmarks of the apoptotic process and were present in both control and hypoxic cells. To elucidate if hypoxic and developmental cell deaths share a common mechanism we evaluated the activation of both intrinsic and extrinsic apoptotic pathways. A basal cleavage of caspase-9 and cytochrome c release was observed by co-immunofluorescence in control embryos, but hypoxic insult significantly increased the incidence of this colocalization. Caspase-8 cleavage remained unchanged after the hypoxic insult, suggesting that the extrinsic pathway would not be involved in hypoxic death. We also observed a significant decrease of Akt activation immediately after hypoxia, possibly facilitating the later release of cytochrome c. In addition we analyzed the influence of retinal ganglion cells (RGC) in neuronal survival. Transection of RGC fibers at embryonic day (ED) 3 did not induce any change in developmental and HxCD at ED12. In conclusion, our findings demonstrate that a hypoxic insult in the developing brain triggers the same apoptotic pathway as the active developmental death. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/12158 Pozo Devoto, Victorio Martin; Bogetti, Maria Eugenia; Fiszer, Sara; Developmental and hypoxia-induced cell death share common ultrastructural and biochemical apoptotic features in the central nervous system; Elsevier; Neuroscience; 252; 11-2013; 190-200 0306-4522 |
url |
http://hdl.handle.net/11336/12158 |
identifier_str_mv |
Pozo Devoto, Victorio Martin; Bogetti, Maria Eugenia; Fiszer, Sara; Developmental and hypoxia-induced cell death share common ultrastructural and biochemical apoptotic features in the central nervous system; Elsevier; Neuroscience; 252; 11-2013; 190-200 0306-4522 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.neuroscience.2013.07.065 info:eu-repo/semantics/altIdentifier/ark/http://www.sciencedirect.com/science/article/pii/S0306452213006660 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269314559770624 |
score |
13.13397 |