Developmental and hypoxia-induced cell death share common ultrastructural and biochemical apoptotic features in the central nervous system

Autores
Pozo Devoto, Victorio Martin; Bogetti, Maria Eugenia; Fiszer, Sara
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Hypoxic insults during the perinatal period lead to motor and cognitive impairments that later appear during childhood. In the adult brain, hypoxic events often lead to necrotic neuronal death, depending on the region and intensity of the event. During development an active apoptotic cell death occurs and could be an important variable affecting the hypoxic insult outcome. In the present work we performed a comparative study, in a chick embryo model, of the phenotypes and molecular markers exhibited during developmental and hypoxic cell death (HxCD). Ultrastructural analysis of optic tectum cells of embryos subjected to hypoxia (8% O2, 60 min) revealed a clear apoptotic morphology that did not differ from the one exhibited during developmental cell death. Integrity of plasma membrane, condensation of chromatin in round well-defined bodies, and gradual shrinkage of the cell are all hallmarks of the apoptotic process and were present in both control and hypoxic cells. To elucidate if hypoxic and developmental cell deaths share a common mechanism we evaluated the activation of both intrinsic and extrinsic apoptotic pathways. A basal cleavage of caspase-9 and cytochrome c release was observed by co-immunofluorescence in control embryos, but hypoxic insult significantly increased the incidence of this colocalization. Caspase-8 cleavage remained unchanged after the hypoxic insult, suggesting that the extrinsic pathway would not be involved in hypoxic death. We also observed a significant decrease of Akt activation immediately after hypoxia, possibly facilitating the later release of cytochrome c. In addition we analyzed the influence of retinal ganglion cells (RGC) in neuronal survival. Transection of RGC fibers at embryonic day (ED) 3 did not induce any change in developmental and HxCD at ED12. In conclusion, our findings demonstrate that a hypoxic insult in the developing brain triggers the same apoptotic pathway as the active developmental death.
Fil: Pozo Devoto, Victorio Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencias "Profesor Eduardo de Robertis"; Argentina. Universidad de Buenos Aires. Facultad de Medicina; Argentina
Fil: Bogetti, Maria Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencias "Profesor Eduardo de Robertis"; Argentina. Universidad de Buenos Aires. Facultad de Medicina; Argentina
Fil: Fiszer, Sara. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencias "Profesor Eduardo de Robertis"; Argentina. Universidad de Buenos Aires. Facultad de Medicina; Argentina
Materia
Apoptosis
Hypoxia
Neuronal Death
Development
Chick Optic Tectum
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/12158

id CONICETDig_61803d8a7c4dca3a7affb7a1e13e5161
oai_identifier_str oai:ri.conicet.gov.ar:11336/12158
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Developmental and hypoxia-induced cell death share common ultrastructural and biochemical apoptotic features in the central nervous systemPozo Devoto, Victorio MartinBogetti, Maria EugeniaFiszer, SaraApoptosisHypoxiaNeuronal DeathDevelopmentChick Optic Tectumhttps://purl.org/becyt/ford/3.1https://purl.org/becyt/ford/3Hypoxic insults during the perinatal period lead to motor and cognitive impairments that later appear during childhood. In the adult brain, hypoxic events often lead to necrotic neuronal death, depending on the region and intensity of the event. During development an active apoptotic cell death occurs and could be an important variable affecting the hypoxic insult outcome. In the present work we performed a comparative study, in a chick embryo model, of the phenotypes and molecular markers exhibited during developmental and hypoxic cell death (HxCD). Ultrastructural analysis of optic tectum cells of embryos subjected to hypoxia (8% O2, 60 min) revealed a clear apoptotic morphology that did not differ from the one exhibited during developmental cell death. Integrity of plasma membrane, condensation of chromatin in round well-defined bodies, and gradual shrinkage of the cell are all hallmarks of the apoptotic process and were present in both control and hypoxic cells. To elucidate if hypoxic and developmental cell deaths share a common mechanism we evaluated the activation of both intrinsic and extrinsic apoptotic pathways. A basal cleavage of caspase-9 and cytochrome c release was observed by co-immunofluorescence in control embryos, but hypoxic insult significantly increased the incidence of this colocalization. Caspase-8 cleavage remained unchanged after the hypoxic insult, suggesting that the extrinsic pathway would not be involved in hypoxic death. We also observed a significant decrease of Akt activation immediately after hypoxia, possibly facilitating the later release of cytochrome c. In addition we analyzed the influence of retinal ganglion cells (RGC) in neuronal survival. Transection of RGC fibers at embryonic day (ED) 3 did not induce any change in developmental and HxCD at ED12. In conclusion, our findings demonstrate that a hypoxic insult in the developing brain triggers the same apoptotic pathway as the active developmental death.Fil: Pozo Devoto, Victorio Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencias "Profesor Eduardo de Robertis"; Argentina. Universidad de Buenos Aires. Facultad de Medicina; ArgentinaFil: Bogetti, Maria Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencias "Profesor Eduardo de Robertis"; Argentina. Universidad de Buenos Aires. Facultad de Medicina; ArgentinaFil: Fiszer, Sara. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencias "Profesor Eduardo de Robertis"; Argentina. Universidad de Buenos Aires. Facultad de Medicina; ArgentinaElsevier2013-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/12158Pozo Devoto, Victorio Martin; Bogetti, Maria Eugenia; Fiszer, Sara; Developmental and hypoxia-induced cell death share common ultrastructural and biochemical apoptotic features in the central nervous system; Elsevier; Neuroscience; 252; 11-2013; 190-2000306-4522enginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.neuroscience.2013.07.065info:eu-repo/semantics/altIdentifier/ark/http://www.sciencedirect.com/science/article/pii/S0306452213006660info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:54:58Zoai:ri.conicet.gov.ar:11336/12158instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:54:58.445CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Developmental and hypoxia-induced cell death share common ultrastructural and biochemical apoptotic features in the central nervous system
title Developmental and hypoxia-induced cell death share common ultrastructural and biochemical apoptotic features in the central nervous system
spellingShingle Developmental and hypoxia-induced cell death share common ultrastructural and biochemical apoptotic features in the central nervous system
Pozo Devoto, Victorio Martin
Apoptosis
Hypoxia
Neuronal Death
Development
Chick Optic Tectum
title_short Developmental and hypoxia-induced cell death share common ultrastructural and biochemical apoptotic features in the central nervous system
title_full Developmental and hypoxia-induced cell death share common ultrastructural and biochemical apoptotic features in the central nervous system
title_fullStr Developmental and hypoxia-induced cell death share common ultrastructural and biochemical apoptotic features in the central nervous system
title_full_unstemmed Developmental and hypoxia-induced cell death share common ultrastructural and biochemical apoptotic features in the central nervous system
title_sort Developmental and hypoxia-induced cell death share common ultrastructural and biochemical apoptotic features in the central nervous system
dc.creator.none.fl_str_mv Pozo Devoto, Victorio Martin
Bogetti, Maria Eugenia
Fiszer, Sara
author Pozo Devoto, Victorio Martin
author_facet Pozo Devoto, Victorio Martin
Bogetti, Maria Eugenia
Fiszer, Sara
author_role author
author2 Bogetti, Maria Eugenia
Fiszer, Sara
author2_role author
author
dc.subject.none.fl_str_mv Apoptosis
Hypoxia
Neuronal Death
Development
Chick Optic Tectum
topic Apoptosis
Hypoxia
Neuronal Death
Development
Chick Optic Tectum
purl_subject.fl_str_mv https://purl.org/becyt/ford/3.1
https://purl.org/becyt/ford/3
dc.description.none.fl_txt_mv Hypoxic insults during the perinatal period lead to motor and cognitive impairments that later appear during childhood. In the adult brain, hypoxic events often lead to necrotic neuronal death, depending on the region and intensity of the event. During development an active apoptotic cell death occurs and could be an important variable affecting the hypoxic insult outcome. In the present work we performed a comparative study, in a chick embryo model, of the phenotypes and molecular markers exhibited during developmental and hypoxic cell death (HxCD). Ultrastructural analysis of optic tectum cells of embryos subjected to hypoxia (8% O2, 60 min) revealed a clear apoptotic morphology that did not differ from the one exhibited during developmental cell death. Integrity of plasma membrane, condensation of chromatin in round well-defined bodies, and gradual shrinkage of the cell are all hallmarks of the apoptotic process and were present in both control and hypoxic cells. To elucidate if hypoxic and developmental cell deaths share a common mechanism we evaluated the activation of both intrinsic and extrinsic apoptotic pathways. A basal cleavage of caspase-9 and cytochrome c release was observed by co-immunofluorescence in control embryos, but hypoxic insult significantly increased the incidence of this colocalization. Caspase-8 cleavage remained unchanged after the hypoxic insult, suggesting that the extrinsic pathway would not be involved in hypoxic death. We also observed a significant decrease of Akt activation immediately after hypoxia, possibly facilitating the later release of cytochrome c. In addition we analyzed the influence of retinal ganglion cells (RGC) in neuronal survival. Transection of RGC fibers at embryonic day (ED) 3 did not induce any change in developmental and HxCD at ED12. In conclusion, our findings demonstrate that a hypoxic insult in the developing brain triggers the same apoptotic pathway as the active developmental death.
Fil: Pozo Devoto, Victorio Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencias "Profesor Eduardo de Robertis"; Argentina. Universidad de Buenos Aires. Facultad de Medicina; Argentina
Fil: Bogetti, Maria Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencias "Profesor Eduardo de Robertis"; Argentina. Universidad de Buenos Aires. Facultad de Medicina; Argentina
Fil: Fiszer, Sara. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencias "Profesor Eduardo de Robertis"; Argentina. Universidad de Buenos Aires. Facultad de Medicina; Argentina
description Hypoxic insults during the perinatal period lead to motor and cognitive impairments that later appear during childhood. In the adult brain, hypoxic events often lead to necrotic neuronal death, depending on the region and intensity of the event. During development an active apoptotic cell death occurs and could be an important variable affecting the hypoxic insult outcome. In the present work we performed a comparative study, in a chick embryo model, of the phenotypes and molecular markers exhibited during developmental and hypoxic cell death (HxCD). Ultrastructural analysis of optic tectum cells of embryos subjected to hypoxia (8% O2, 60 min) revealed a clear apoptotic morphology that did not differ from the one exhibited during developmental cell death. Integrity of plasma membrane, condensation of chromatin in round well-defined bodies, and gradual shrinkage of the cell are all hallmarks of the apoptotic process and were present in both control and hypoxic cells. To elucidate if hypoxic and developmental cell deaths share a common mechanism we evaluated the activation of both intrinsic and extrinsic apoptotic pathways. A basal cleavage of caspase-9 and cytochrome c release was observed by co-immunofluorescence in control embryos, but hypoxic insult significantly increased the incidence of this colocalization. Caspase-8 cleavage remained unchanged after the hypoxic insult, suggesting that the extrinsic pathway would not be involved in hypoxic death. We also observed a significant decrease of Akt activation immediately after hypoxia, possibly facilitating the later release of cytochrome c. In addition we analyzed the influence of retinal ganglion cells (RGC) in neuronal survival. Transection of RGC fibers at embryonic day (ED) 3 did not induce any change in developmental and HxCD at ED12. In conclusion, our findings demonstrate that a hypoxic insult in the developing brain triggers the same apoptotic pathway as the active developmental death.
publishDate 2013
dc.date.none.fl_str_mv 2013-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/12158
Pozo Devoto, Victorio Martin; Bogetti, Maria Eugenia; Fiszer, Sara; Developmental and hypoxia-induced cell death share common ultrastructural and biochemical apoptotic features in the central nervous system; Elsevier; Neuroscience; 252; 11-2013; 190-200
0306-4522
url http://hdl.handle.net/11336/12158
identifier_str_mv Pozo Devoto, Victorio Martin; Bogetti, Maria Eugenia; Fiszer, Sara; Developmental and hypoxia-induced cell death share common ultrastructural and biochemical apoptotic features in the central nervous system; Elsevier; Neuroscience; 252; 11-2013; 190-200
0306-4522
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.neuroscience.2013.07.065
info:eu-repo/semantics/altIdentifier/ark/http://www.sciencedirect.com/science/article/pii/S0306452213006660
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269314559770624
score 13.13397