Hypoxia induces complex I inhibition and ultrastructural damage by increasing mitochondrial nitric oxide in developing CNS

Autores
Giusti, Sebastián; Converso, Daniela Paola; Poderoso, Juan J.; Fiszer, Sara
Año de publicación
2008
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
NO-mediated toxicity contributes to neuronal damage after hypoxia; however, the molecular mechanisms involved are still a matter of controversy. Since mitochondria play a key role in signalling neuronal death, we aimed to determine the role of nitrative stress in hypoxia-induced mitochondrial damage. Therefore, we analysed the biochemical and ultrastructural impairment of these organelles in the optic lobe of chick embryos after in vivo hypoxia- reoxygenation. Also, we studied the NO-dependence of damage and examined modulation of mitochondrial nitric oxide synthase (mtNOS) after the hypoxic event. A transient but substantial increase in mtNOS content and activity was observed at 0-2 h posthypoxia, resulting in accumulation of nitrated mitochondrial proteins measured by immunoblotting. However, no variations in nNOS content were observed in the homogenates, suggesting an increased translocation to mitochondria and not a general de novo synthesis. In parallel with mtNOS kinetics, mitochondria exhibited prolonged inhibition of maximal complex I activity and ultrastructural phenotypes associated with swelling, namely, fading of cristae, intracristal dilations and membrane disruption. Administration of the selective nNOS inhibitor 7-nitroindazole 20 min before hypoxia prevented complex I inhibition and most ultrastructural damage. In conclusion, we show here for the first time that hypoxia induces NO-dependent complex I inhibition and ultrastructural damage by increasing mitochondrial NO in the developing brain.
Fil: Giusti, Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencia "Prof. Eduardo de Robertis". Universidad de Buenos Aires. Facultad de Medicina. Instituto de Biología Celular y Neurociencia; Argentina
Fil: Converso, Daniela Paola. Universidad de Buenos Aires. Facultad de Medicina. Hospital de Clínicas General San Martín; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay; Argentina
Fil: Poderoso, Juan J.. Universidad de Buenos Aires. Facultad de Medicina. Hospital de Clínicas General San Martín; Argentina
Fil: Fiszer, Sara. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencia "Prof. Eduardo de Robertis". Universidad de Buenos Aires. Facultad de Medicina. Instituto de Biología Celular y Neurociencia; Argentina
Materia
CHICK OPTIC LOBE
COMPLEX I
DEVELOPMENT
HYPOXIA
MITOCHONDRIA
MTNOS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/137310

id CONICETDig_24aaa6e667e45fbea0cce58b05abe373
oai_identifier_str oai:ri.conicet.gov.ar:11336/137310
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Hypoxia induces complex I inhibition and ultrastructural damage by increasing mitochondrial nitric oxide in developing CNSGiusti, SebastiánConverso, Daniela PaolaPoderoso, Juan J.Fiszer, SaraCHICK OPTIC LOBECOMPLEX IDEVELOPMENTHYPOXIAMITOCHONDRIAMTNOShttps://purl.org/becyt/ford/3.1https://purl.org/becyt/ford/3NO-mediated toxicity contributes to neuronal damage after hypoxia; however, the molecular mechanisms involved are still a matter of controversy. Since mitochondria play a key role in signalling neuronal death, we aimed to determine the role of nitrative stress in hypoxia-induced mitochondrial damage. Therefore, we analysed the biochemical and ultrastructural impairment of these organelles in the optic lobe of chick embryos after in vivo hypoxia- reoxygenation. Also, we studied the NO-dependence of damage and examined modulation of mitochondrial nitric oxide synthase (mtNOS) after the hypoxic event. A transient but substantial increase in mtNOS content and activity was observed at 0-2 h posthypoxia, resulting in accumulation of nitrated mitochondrial proteins measured by immunoblotting. However, no variations in nNOS content were observed in the homogenates, suggesting an increased translocation to mitochondria and not a general de novo synthesis. In parallel with mtNOS kinetics, mitochondria exhibited prolonged inhibition of maximal complex I activity and ultrastructural phenotypes associated with swelling, namely, fading of cristae, intracristal dilations and membrane disruption. Administration of the selective nNOS inhibitor 7-nitroindazole 20 min before hypoxia prevented complex I inhibition and most ultrastructural damage. In conclusion, we show here for the first time that hypoxia induces NO-dependent complex I inhibition and ultrastructural damage by increasing mitochondrial NO in the developing brain.Fil: Giusti, Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencia "Prof. Eduardo de Robertis". Universidad de Buenos Aires. Facultad de Medicina. Instituto de Biología Celular y Neurociencia; ArgentinaFil: Converso, Daniela Paola. Universidad de Buenos Aires. Facultad de Medicina. Hospital de Clínicas General San Martín; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay; ArgentinaFil: Poderoso, Juan J.. Universidad de Buenos Aires. Facultad de Medicina. Hospital de Clínicas General San Martín; ArgentinaFil: Fiszer, Sara. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencia "Prof. Eduardo de Robertis". Universidad de Buenos Aires. Facultad de Medicina. Instituto de Biología Celular y Neurociencia; ArgentinaWiley Blackwell Publishing, Inc2008-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/137310Giusti, Sebastián; Converso, Daniela Paola; Poderoso, Juan J.; Fiszer, Sara; Hypoxia induces complex I inhibition and ultrastructural damage by increasing mitochondrial nitric oxide in developing CNS; Wiley Blackwell Publishing, Inc; European Journal Of Neuroscience; 27; 1; 12-2008; 123-1310953-816XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1111/j.1460-9568.2007.05995.xinfo:eu-repo/semantics/altIdentifier/doi/10.1111/j.1460-9568.2007.05995.xinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:49:05Zoai:ri.conicet.gov.ar:11336/137310instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:49:05.626CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Hypoxia induces complex I inhibition and ultrastructural damage by increasing mitochondrial nitric oxide in developing CNS
title Hypoxia induces complex I inhibition and ultrastructural damage by increasing mitochondrial nitric oxide in developing CNS
spellingShingle Hypoxia induces complex I inhibition and ultrastructural damage by increasing mitochondrial nitric oxide in developing CNS
Giusti, Sebastián
CHICK OPTIC LOBE
COMPLEX I
DEVELOPMENT
HYPOXIA
MITOCHONDRIA
MTNOS
title_short Hypoxia induces complex I inhibition and ultrastructural damage by increasing mitochondrial nitric oxide in developing CNS
title_full Hypoxia induces complex I inhibition and ultrastructural damage by increasing mitochondrial nitric oxide in developing CNS
title_fullStr Hypoxia induces complex I inhibition and ultrastructural damage by increasing mitochondrial nitric oxide in developing CNS
title_full_unstemmed Hypoxia induces complex I inhibition and ultrastructural damage by increasing mitochondrial nitric oxide in developing CNS
title_sort Hypoxia induces complex I inhibition and ultrastructural damage by increasing mitochondrial nitric oxide in developing CNS
dc.creator.none.fl_str_mv Giusti, Sebastián
Converso, Daniela Paola
Poderoso, Juan J.
Fiszer, Sara
author Giusti, Sebastián
author_facet Giusti, Sebastián
Converso, Daniela Paola
Poderoso, Juan J.
Fiszer, Sara
author_role author
author2 Converso, Daniela Paola
Poderoso, Juan J.
Fiszer, Sara
author2_role author
author
author
dc.subject.none.fl_str_mv CHICK OPTIC LOBE
COMPLEX I
DEVELOPMENT
HYPOXIA
MITOCHONDRIA
MTNOS
topic CHICK OPTIC LOBE
COMPLEX I
DEVELOPMENT
HYPOXIA
MITOCHONDRIA
MTNOS
purl_subject.fl_str_mv https://purl.org/becyt/ford/3.1
https://purl.org/becyt/ford/3
dc.description.none.fl_txt_mv NO-mediated toxicity contributes to neuronal damage after hypoxia; however, the molecular mechanisms involved are still a matter of controversy. Since mitochondria play a key role in signalling neuronal death, we aimed to determine the role of nitrative stress in hypoxia-induced mitochondrial damage. Therefore, we analysed the biochemical and ultrastructural impairment of these organelles in the optic lobe of chick embryos after in vivo hypoxia- reoxygenation. Also, we studied the NO-dependence of damage and examined modulation of mitochondrial nitric oxide synthase (mtNOS) after the hypoxic event. A transient but substantial increase in mtNOS content and activity was observed at 0-2 h posthypoxia, resulting in accumulation of nitrated mitochondrial proteins measured by immunoblotting. However, no variations in nNOS content were observed in the homogenates, suggesting an increased translocation to mitochondria and not a general de novo synthesis. In parallel with mtNOS kinetics, mitochondria exhibited prolonged inhibition of maximal complex I activity and ultrastructural phenotypes associated with swelling, namely, fading of cristae, intracristal dilations and membrane disruption. Administration of the selective nNOS inhibitor 7-nitroindazole 20 min before hypoxia prevented complex I inhibition and most ultrastructural damage. In conclusion, we show here for the first time that hypoxia induces NO-dependent complex I inhibition and ultrastructural damage by increasing mitochondrial NO in the developing brain.
Fil: Giusti, Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencia "Prof. Eduardo de Robertis". Universidad de Buenos Aires. Facultad de Medicina. Instituto de Biología Celular y Neurociencia; Argentina
Fil: Converso, Daniela Paola. Universidad de Buenos Aires. Facultad de Medicina. Hospital de Clínicas General San Martín; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay; Argentina
Fil: Poderoso, Juan J.. Universidad de Buenos Aires. Facultad de Medicina. Hospital de Clínicas General San Martín; Argentina
Fil: Fiszer, Sara. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencia "Prof. Eduardo de Robertis". Universidad de Buenos Aires. Facultad de Medicina. Instituto de Biología Celular y Neurociencia; Argentina
description NO-mediated toxicity contributes to neuronal damage after hypoxia; however, the molecular mechanisms involved are still a matter of controversy. Since mitochondria play a key role in signalling neuronal death, we aimed to determine the role of nitrative stress in hypoxia-induced mitochondrial damage. Therefore, we analysed the biochemical and ultrastructural impairment of these organelles in the optic lobe of chick embryos after in vivo hypoxia- reoxygenation. Also, we studied the NO-dependence of damage and examined modulation of mitochondrial nitric oxide synthase (mtNOS) after the hypoxic event. A transient but substantial increase in mtNOS content and activity was observed at 0-2 h posthypoxia, resulting in accumulation of nitrated mitochondrial proteins measured by immunoblotting. However, no variations in nNOS content were observed in the homogenates, suggesting an increased translocation to mitochondria and not a general de novo synthesis. In parallel with mtNOS kinetics, mitochondria exhibited prolonged inhibition of maximal complex I activity and ultrastructural phenotypes associated with swelling, namely, fading of cristae, intracristal dilations and membrane disruption. Administration of the selective nNOS inhibitor 7-nitroindazole 20 min before hypoxia prevented complex I inhibition and most ultrastructural damage. In conclusion, we show here for the first time that hypoxia induces NO-dependent complex I inhibition and ultrastructural damage by increasing mitochondrial NO in the developing brain.
publishDate 2008
dc.date.none.fl_str_mv 2008-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/137310
Giusti, Sebastián; Converso, Daniela Paola; Poderoso, Juan J.; Fiszer, Sara; Hypoxia induces complex I inhibition and ultrastructural damage by increasing mitochondrial nitric oxide in developing CNS; Wiley Blackwell Publishing, Inc; European Journal Of Neuroscience; 27; 1; 12-2008; 123-131
0953-816X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/137310
identifier_str_mv Giusti, Sebastián; Converso, Daniela Paola; Poderoso, Juan J.; Fiszer, Sara; Hypoxia induces complex I inhibition and ultrastructural damage by increasing mitochondrial nitric oxide in developing CNS; Wiley Blackwell Publishing, Inc; European Journal Of Neuroscience; 27; 1; 12-2008; 123-131
0953-816X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1111/j.1460-9568.2007.05995.x
info:eu-repo/semantics/altIdentifier/doi/10.1111/j.1460-9568.2007.05995.x
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Wiley Blackwell Publishing, Inc
publisher.none.fl_str_mv Wiley Blackwell Publishing, Inc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613522155110400
score 13.070432