Representation of spatial sequences using nested rules in human prefrontal cortex
- Autores
- Wang, Liping; Amalric, Marie; Fang, Wen; Jiang, Xinjian; Pallier, Christophe; Figueira, Santiago; Sigman, Mariano; Dehaene, Stanislas
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Memory for spatial sequences does not depend solely on the number of locations to be stored, but also on the presence of spatial regularities. Here, we show that the human brain quickly stores spatial sequences by detecting geometrical regularities at multiple time scales and encoding them in a format akin to a programming language. We measured gaze-anticipation behavior while spatial sequences of variable regularity were repeated. Participants’ behavior suggested that they quickly discovered the most compact description of each sequence in a language comprising nested rules, and used these rules to compress the sequence in memory and predict the next items. Activity in dorsal inferior prefrontal cortex correlated with the amount of compression, while right dorsolateral prefrontal cortex encoded the presence of embedded structures. Sequence learning was accompanied by a progressive differentiation of multi-voxel activity patterns in these regions. We propose that humans are endowed with a simple “language of geometry” which recruits a dorsal prefrontal circuit for geometrical rules, distinct from but close to areas involved in natural language processing
Fil: Wang, Liping. Chinese Academy of Sciences; República de China
Fil: Amalric, Marie. Collége de France; Francia. Université Paris Sud; Francia. Sorbonne University; Francia
Fil: Fang, Wen. East China Normal University.; China
Fil: Jiang, Xinjian. East China Normal University.; China
Fil: Pallier, Christophe. Université Paris Sud; Francia. Sorbonne University; Francia
Fil: Figueira, Santiago. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto Tecnológico de Buenos Aires. Departamento de Informatica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Sigman, Mariano. Universidad Torcuato Di Tella; Argentina. Universidad Nebrija; España. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Dehaene, Stanislas. Collége de France; Francia. Université Paris Sud; Francia - Materia
-
spatial sequences
human prefrontal cortex - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/109134
Ver los metadatos del registro completo
id |
CONICETDig_6024c811604c7dd4a5b9e85f90602c92 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/109134 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Representation of spatial sequences using nested rules in human prefrontal cortexWang, LipingAmalric, MarieFang, WenJiang, XinjianPallier, ChristopheFigueira, SantiagoSigman, MarianoDehaene, Stanislasspatial sequenceshuman prefrontal cortexhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Memory for spatial sequences does not depend solely on the number of locations to be stored, but also on the presence of spatial regularities. Here, we show that the human brain quickly stores spatial sequences by detecting geometrical regularities at multiple time scales and encoding them in a format akin to a programming language. We measured gaze-anticipation behavior while spatial sequences of variable regularity were repeated. Participants’ behavior suggested that they quickly discovered the most compact description of each sequence in a language comprising nested rules, and used these rules to compress the sequence in memory and predict the next items. Activity in dorsal inferior prefrontal cortex correlated with the amount of compression, while right dorsolateral prefrontal cortex encoded the presence of embedded structures. Sequence learning was accompanied by a progressive differentiation of multi-voxel activity patterns in these regions. We propose that humans are endowed with a simple “language of geometry” which recruits a dorsal prefrontal circuit for geometrical rules, distinct from but close to areas involved in natural language processingFil: Wang, Liping. Chinese Academy of Sciences; República de ChinaFil: Amalric, Marie. Collége de France; Francia. Université Paris Sud; Francia. Sorbonne University; FranciaFil: Fang, Wen. East China Normal University.; ChinaFil: Jiang, Xinjian. East China Normal University.; ChinaFil: Pallier, Christophe. Université Paris Sud; Francia. Sorbonne University; FranciaFil: Figueira, Santiago. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto Tecnológico de Buenos Aires. Departamento de Informatica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Sigman, Mariano. Universidad Torcuato Di Tella; Argentina. Universidad Nebrija; España. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Dehaene, Stanislas. Collége de France; Francia. Université Paris Sud; FranciaAcademic Press Inc Elsevier Science2019-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/109134Wang, Liping; Amalric, Marie; Fang, Wen; Jiang, Xinjian; Pallier, Christophe; et al.; Representation of spatial sequences using nested rules in human prefrontal cortex; Academic Press Inc Elsevier Science; Journal Neuroimag; 186; 2-2019; 245-2551053-8119CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S1053811918320330info:eu-repo/semantics/altIdentifier/doi/10.1016/j.neuroimage.2018.10.061info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:18:21Zoai:ri.conicet.gov.ar:11336/109134instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:18:21.707CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Representation of spatial sequences using nested rules in human prefrontal cortex |
title |
Representation of spatial sequences using nested rules in human prefrontal cortex |
spellingShingle |
Representation of spatial sequences using nested rules in human prefrontal cortex Wang, Liping spatial sequences human prefrontal cortex |
title_short |
Representation of spatial sequences using nested rules in human prefrontal cortex |
title_full |
Representation of spatial sequences using nested rules in human prefrontal cortex |
title_fullStr |
Representation of spatial sequences using nested rules in human prefrontal cortex |
title_full_unstemmed |
Representation of spatial sequences using nested rules in human prefrontal cortex |
title_sort |
Representation of spatial sequences using nested rules in human prefrontal cortex |
dc.creator.none.fl_str_mv |
Wang, Liping Amalric, Marie Fang, Wen Jiang, Xinjian Pallier, Christophe Figueira, Santiago Sigman, Mariano Dehaene, Stanislas |
author |
Wang, Liping |
author_facet |
Wang, Liping Amalric, Marie Fang, Wen Jiang, Xinjian Pallier, Christophe Figueira, Santiago Sigman, Mariano Dehaene, Stanislas |
author_role |
author |
author2 |
Amalric, Marie Fang, Wen Jiang, Xinjian Pallier, Christophe Figueira, Santiago Sigman, Mariano Dehaene, Stanislas |
author2_role |
author author author author author author author |
dc.subject.none.fl_str_mv |
spatial sequences human prefrontal cortex |
topic |
spatial sequences human prefrontal cortex |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Memory for spatial sequences does not depend solely on the number of locations to be stored, but also on the presence of spatial regularities. Here, we show that the human brain quickly stores spatial sequences by detecting geometrical regularities at multiple time scales and encoding them in a format akin to a programming language. We measured gaze-anticipation behavior while spatial sequences of variable regularity were repeated. Participants’ behavior suggested that they quickly discovered the most compact description of each sequence in a language comprising nested rules, and used these rules to compress the sequence in memory and predict the next items. Activity in dorsal inferior prefrontal cortex correlated with the amount of compression, while right dorsolateral prefrontal cortex encoded the presence of embedded structures. Sequence learning was accompanied by a progressive differentiation of multi-voxel activity patterns in these regions. We propose that humans are endowed with a simple “language of geometry” which recruits a dorsal prefrontal circuit for geometrical rules, distinct from but close to areas involved in natural language processing Fil: Wang, Liping. Chinese Academy of Sciences; República de China Fil: Amalric, Marie. Collége de France; Francia. Université Paris Sud; Francia. Sorbonne University; Francia Fil: Fang, Wen. East China Normal University.; China Fil: Jiang, Xinjian. East China Normal University.; China Fil: Pallier, Christophe. Université Paris Sud; Francia. Sorbonne University; Francia Fil: Figueira, Santiago. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto Tecnológico de Buenos Aires. Departamento de Informatica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Sigman, Mariano. Universidad Torcuato Di Tella; Argentina. Universidad Nebrija; España. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Dehaene, Stanislas. Collége de France; Francia. Université Paris Sud; Francia |
description |
Memory for spatial sequences does not depend solely on the number of locations to be stored, but also on the presence of spatial regularities. Here, we show that the human brain quickly stores spatial sequences by detecting geometrical regularities at multiple time scales and encoding them in a format akin to a programming language. We measured gaze-anticipation behavior while spatial sequences of variable regularity were repeated. Participants’ behavior suggested that they quickly discovered the most compact description of each sequence in a language comprising nested rules, and used these rules to compress the sequence in memory and predict the next items. Activity in dorsal inferior prefrontal cortex correlated with the amount of compression, while right dorsolateral prefrontal cortex encoded the presence of embedded structures. Sequence learning was accompanied by a progressive differentiation of multi-voxel activity patterns in these regions. We propose that humans are endowed with a simple “language of geometry” which recruits a dorsal prefrontal circuit for geometrical rules, distinct from but close to areas involved in natural language processing |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/109134 Wang, Liping; Amalric, Marie; Fang, Wen; Jiang, Xinjian; Pallier, Christophe; et al.; Representation of spatial sequences using nested rules in human prefrontal cortex; Academic Press Inc Elsevier Science; Journal Neuroimag; 186; 2-2019; 245-255 1053-8119 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/109134 |
identifier_str_mv |
Wang, Liping; Amalric, Marie; Fang, Wen; Jiang, Xinjian; Pallier, Christophe; et al.; Representation of spatial sequences using nested rules in human prefrontal cortex; Academic Press Inc Elsevier Science; Journal Neuroimag; 186; 2-2019; 245-255 1053-8119 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S1053811918320330 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.neuroimage.2018.10.061 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842981003522473984 |
score |
12.993085 |