Furfural removal from a polluted effluent by using a fluidized bed reactor
- Autores
- Echeverría, Macarena; Cuadra, Pablo; Sandoval, Evangelina; Benimeli, Claudia Susana
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Furfural is a heterocyclic aromatic aldehyde and wastewaters derived from its production can contain around 800 mg l-1, which can cause toxic effects on living systems if released into the environment without proper treatment. In the present work, the furfural removal from a simulated effluent by a fluidized bed bioreactor filled with an actinobacteria biofilm on vegetable sponge (Luffa aegyptiaca) support was studied. For this, a suspension of a mixed culture of Nocardiopsis sp. L9, Streptomyces sp. A12 and M7, in TSB medium (D.O540nm=1) was prepared. The luffa support was cut in cubes of approximately 0.1 g, which were washed and sterilized. The bacterial biofilm production on luffa cubes was carried out in 250 ml Erlenmeyer flasks, which contained 0.5 g of the support and 60 ml of the bacterial suspension. After 96 h of incubation at 30 °C and 100 rpm, the colonized sponge cubes were introduced into the reactor for the bioremediation treatment. A laboratory-scale fluidized bed reactor was used, which had an inlet for the effluent to be treated in the lower side and an outlet for the treated effluent in the upper part. The furfural residual concentration in the treated effluent was evaluated by HPLC, every 24 h for 4 days. Ecotoxicity tests were carried out using Raphanus sativus seeds (radish, Punta Blanca variety). Bacterial colonization on vegetal sponge was also evaluated by scanning electron microscopy, before and after treatment. The analysis by HPLC showed a complete depletion of furfural in the effluent after 24 h of treatment. Microphotographs by scanning electron microscopy showed an increase in the presence of possible polymeric substances in luffa cubes at the end of treatment regarding to the initial time, as result of biofilm production by the actinobacterial consortium. The ecotoxicity tests with radish seeds showed significant increases (p<0.05) in the vegetable biomarkers of seedlings obtained in the treated effluent, indicating that the toxic effects caused by furfural were reversed, confirming the effectiveness of the bioremediation process.
Fil: Echeverría, Macarena. Universidad Tecnológica Nacional. Facultad Regional Resistencia; Argentina
Fil: Cuadra, Pablo. Universidad Tecnológica Nacional. Facultad Regional Resistencia; Argentina
Fil: Sandoval, Evangelina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentina
Fil: Benimeli, Claudia Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentina. Universidad Nacional de Catamarca. Facultad de Ciencias Exactas y Naturales; Argentina
XVIII Congreso de la Sociedad Argentina de Microbiología General
Chapadmalal
Argentina
Sociedad Argentina de Microbiología General - Materia
-
ACTINOBACTERIAS
FURFURAL
BIOFILM
BIOREACTORES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/234495
Ver los metadatos del registro completo
id |
CONICETDig_600d67aff9c87f64508f700db5293dc6 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/234495 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Furfural removal from a polluted effluent by using a fluidized bed reactorEcheverría, MacarenaCuadra, PabloSandoval, EvangelinaBenimeli, Claudia SusanaACTINOBACTERIASFURFURALBIOFILMBIOREACTOREShttps://purl.org/becyt/ford/2.8https://purl.org/becyt/ford/2Furfural is a heterocyclic aromatic aldehyde and wastewaters derived from its production can contain around 800 mg l-1, which can cause toxic effects on living systems if released into the environment without proper treatment. In the present work, the furfural removal from a simulated effluent by a fluidized bed bioreactor filled with an actinobacteria biofilm on vegetable sponge (Luffa aegyptiaca) support was studied. For this, a suspension of a mixed culture of Nocardiopsis sp. L9, Streptomyces sp. A12 and M7, in TSB medium (D.O540nm=1) was prepared. The luffa support was cut in cubes of approximately 0.1 g, which were washed and sterilized. The bacterial biofilm production on luffa cubes was carried out in 250 ml Erlenmeyer flasks, which contained 0.5 g of the support and 60 ml of the bacterial suspension. After 96 h of incubation at 30 °C and 100 rpm, the colonized sponge cubes were introduced into the reactor for the bioremediation treatment. A laboratory-scale fluidized bed reactor was used, which had an inlet for the effluent to be treated in the lower side and an outlet for the treated effluent in the upper part. The furfural residual concentration in the treated effluent was evaluated by HPLC, every 24 h for 4 days. Ecotoxicity tests were carried out using Raphanus sativus seeds (radish, Punta Blanca variety). Bacterial colonization on vegetal sponge was also evaluated by scanning electron microscopy, before and after treatment. The analysis by HPLC showed a complete depletion of furfural in the effluent after 24 h of treatment. Microphotographs by scanning electron microscopy showed an increase in the presence of possible polymeric substances in luffa cubes at the end of treatment regarding to the initial time, as result of biofilm production by the actinobacterial consortium. The ecotoxicity tests with radish seeds showed significant increases (p<0.05) in the vegetable biomarkers of seedlings obtained in the treated effluent, indicating that the toxic effects caused by furfural were reversed, confirming the effectiveness of the bioremediation process.Fil: Echeverría, Macarena. Universidad Tecnológica Nacional. Facultad Regional Resistencia; ArgentinaFil: Cuadra, Pablo. Universidad Tecnológica Nacional. Facultad Regional Resistencia; ArgentinaFil: Sandoval, Evangelina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; ArgentinaFil: Benimeli, Claudia Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentina. Universidad Nacional de Catamarca. Facultad de Ciencias Exactas y Naturales; ArgentinaXVIII Congreso de la Sociedad Argentina de Microbiología GeneralChapadmalalArgentinaSociedad Argentina de Microbiología GeneralSociedad Argentina de Microbiología General2023info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectCongresoBookhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/234495Furfural removal from a polluted effluent by using a fluidized bed reactor; XVIII Congreso de la Sociedad Argentina de Microbiología General; Chapadmalal; Argentina; 2023; 67-68CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://samige.org.ar/wp-content/uploads/2023/09/Libro-de-Resumenes-Final.pdfNacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:05:27Zoai:ri.conicet.gov.ar:11336/234495instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:05:27.524CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Furfural removal from a polluted effluent by using a fluidized bed reactor |
title |
Furfural removal from a polluted effluent by using a fluidized bed reactor |
spellingShingle |
Furfural removal from a polluted effluent by using a fluidized bed reactor Echeverría, Macarena ACTINOBACTERIAS FURFURAL BIOFILM BIOREACTORES |
title_short |
Furfural removal from a polluted effluent by using a fluidized bed reactor |
title_full |
Furfural removal from a polluted effluent by using a fluidized bed reactor |
title_fullStr |
Furfural removal from a polluted effluent by using a fluidized bed reactor |
title_full_unstemmed |
Furfural removal from a polluted effluent by using a fluidized bed reactor |
title_sort |
Furfural removal from a polluted effluent by using a fluidized bed reactor |
dc.creator.none.fl_str_mv |
Echeverría, Macarena Cuadra, Pablo Sandoval, Evangelina Benimeli, Claudia Susana |
author |
Echeverría, Macarena |
author_facet |
Echeverría, Macarena Cuadra, Pablo Sandoval, Evangelina Benimeli, Claudia Susana |
author_role |
author |
author2 |
Cuadra, Pablo Sandoval, Evangelina Benimeli, Claudia Susana |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
ACTINOBACTERIAS FURFURAL BIOFILM BIOREACTORES |
topic |
ACTINOBACTERIAS FURFURAL BIOFILM BIOREACTORES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.8 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Furfural is a heterocyclic aromatic aldehyde and wastewaters derived from its production can contain around 800 mg l-1, which can cause toxic effects on living systems if released into the environment without proper treatment. In the present work, the furfural removal from a simulated effluent by a fluidized bed bioreactor filled with an actinobacteria biofilm on vegetable sponge (Luffa aegyptiaca) support was studied. For this, a suspension of a mixed culture of Nocardiopsis sp. L9, Streptomyces sp. A12 and M7, in TSB medium (D.O540nm=1) was prepared. The luffa support was cut in cubes of approximately 0.1 g, which were washed and sterilized. The bacterial biofilm production on luffa cubes was carried out in 250 ml Erlenmeyer flasks, which contained 0.5 g of the support and 60 ml of the bacterial suspension. After 96 h of incubation at 30 °C and 100 rpm, the colonized sponge cubes were introduced into the reactor for the bioremediation treatment. A laboratory-scale fluidized bed reactor was used, which had an inlet for the effluent to be treated in the lower side and an outlet for the treated effluent in the upper part. The furfural residual concentration in the treated effluent was evaluated by HPLC, every 24 h for 4 days. Ecotoxicity tests were carried out using Raphanus sativus seeds (radish, Punta Blanca variety). Bacterial colonization on vegetal sponge was also evaluated by scanning electron microscopy, before and after treatment. The analysis by HPLC showed a complete depletion of furfural in the effluent after 24 h of treatment. Microphotographs by scanning electron microscopy showed an increase in the presence of possible polymeric substances in luffa cubes at the end of treatment regarding to the initial time, as result of biofilm production by the actinobacterial consortium. The ecotoxicity tests with radish seeds showed significant increases (p<0.05) in the vegetable biomarkers of seedlings obtained in the treated effluent, indicating that the toxic effects caused by furfural were reversed, confirming the effectiveness of the bioremediation process. Fil: Echeverría, Macarena. Universidad Tecnológica Nacional. Facultad Regional Resistencia; Argentina Fil: Cuadra, Pablo. Universidad Tecnológica Nacional. Facultad Regional Resistencia; Argentina Fil: Sandoval, Evangelina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentina Fil: Benimeli, Claudia Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentina. Universidad Nacional de Catamarca. Facultad de Ciencias Exactas y Naturales; Argentina XVIII Congreso de la Sociedad Argentina de Microbiología General Chapadmalal Argentina Sociedad Argentina de Microbiología General |
description |
Furfural is a heterocyclic aromatic aldehyde and wastewaters derived from its production can contain around 800 mg l-1, which can cause toxic effects on living systems if released into the environment without proper treatment. In the present work, the furfural removal from a simulated effluent by a fluidized bed bioreactor filled with an actinobacteria biofilm on vegetable sponge (Luffa aegyptiaca) support was studied. For this, a suspension of a mixed culture of Nocardiopsis sp. L9, Streptomyces sp. A12 and M7, in TSB medium (D.O540nm=1) was prepared. The luffa support was cut in cubes of approximately 0.1 g, which were washed and sterilized. The bacterial biofilm production on luffa cubes was carried out in 250 ml Erlenmeyer flasks, which contained 0.5 g of the support and 60 ml of the bacterial suspension. After 96 h of incubation at 30 °C and 100 rpm, the colonized sponge cubes were introduced into the reactor for the bioremediation treatment. A laboratory-scale fluidized bed reactor was used, which had an inlet for the effluent to be treated in the lower side and an outlet for the treated effluent in the upper part. The furfural residual concentration in the treated effluent was evaluated by HPLC, every 24 h for 4 days. Ecotoxicity tests were carried out using Raphanus sativus seeds (radish, Punta Blanca variety). Bacterial colonization on vegetal sponge was also evaluated by scanning electron microscopy, before and after treatment. The analysis by HPLC showed a complete depletion of furfural in the effluent after 24 h of treatment. Microphotographs by scanning electron microscopy showed an increase in the presence of possible polymeric substances in luffa cubes at the end of treatment regarding to the initial time, as result of biofilm production by the actinobacterial consortium. The ecotoxicity tests with radish seeds showed significant increases (p<0.05) in the vegetable biomarkers of seedlings obtained in the treated effluent, indicating that the toxic effects caused by furfural were reversed, confirming the effectiveness of the bioremediation process. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/conferenceObject Congreso Book http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
status_str |
publishedVersion |
format |
conferenceObject |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/234495 Furfural removal from a polluted effluent by using a fluidized bed reactor; XVIII Congreso de la Sociedad Argentina de Microbiología General; Chapadmalal; Argentina; 2023; 67-68 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/234495 |
identifier_str_mv |
Furfural removal from a polluted effluent by using a fluidized bed reactor; XVIII Congreso de la Sociedad Argentina de Microbiología General; Chapadmalal; Argentina; 2023; 67-68 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://samige.org.ar/wp-content/uploads/2023/09/Libro-de-Resumenes-Final.pdf |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.coverage.none.fl_str_mv |
Nacional |
dc.publisher.none.fl_str_mv |
Sociedad Argentina de Microbiología General |
publisher.none.fl_str_mv |
Sociedad Argentina de Microbiología General |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269911016013824 |
score |
13.13397 |