Bayesian networks and structural equation models reveal genetic causal relationships between productivity, defense, and climate-adaptability traits in interior lodgepole pine

Autores
Cappa, Eduardo Pablo; Klutsch, Jennifer G.; Benowicz, Andy; Munilla, Sebastián; Mansfield, Shawn D.; Erbilgin, Nadir; Thomas, Barb R.; El-Kassaby, Yousry A.
Año de publicación
2025
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
This study investigates the integration of Bayesian networks (BN) and structural equation models (SEM) to explore genomic relationships among nine traits related to productivity, defense, and climate-adaptability in an interior lodgepole pine breeding program. Data from 392 open-pollinated trees, genotyped with 25,099 SNP markers, were analyzed. The traditional multi-trait model (MTM) served as a benchmark for comparing SEM in estimating genetic (co)variance components, genetic correlations, breeding value (BV) predictions, and predictive ability, using both pedigree- (ABLUP) and genomic-based (GBLUP) individual-tree mixed models. The Hill-Climbing algorithm identified 12 significant causal structures (λ) among traits. Strong positive causal effects included tree height (HT) on wood density (WD) (λHT→WD = 0.413) and on stable carbon isotope ratio (C13) (λHT→C13 = 0.565), and limonene (LIMO) on carbon assimilation rate (CAR) (λLIMO→CAR = 0.368). The most influential causal relationship was HT → C13, followed by resistance to western gall rust (WGR) → CAR, CAR → LIMO, and WGR → C13. SEM incorporated these relationships, capturing both direct and indirect effects. Compared with MTM, SEM yielded lower residual variances, higher additive variances, and higher heritability estimates for all traits. The λ values from SEM correlated strongly with genetic correlations (0.932), with similarly high correlations between models (0.929), though SEM produced lower posterior mean correlations. BV correlations between models were high (ABLUP > 0.82, GBLUP > 0.84), but some reranking occurred among the top 39-trees (ABLUP > 0.71, GBLUP > 0.42). ABLUP and GBLUP-SEM models outperformed MTM in predictive ability, with mean gains of 6.62% and 6.03%, mainly for conditioned traits. BN-SEM enhances understanding of trait networks, improving genomic evaluations and breeding strategies in forest trees.
Fil: Cappa, Eduardo Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Recursos Naturales. Instituto de Recursos Biológicos; Argentina
Fil: Klutsch, Jennifer G.. University of Alberta; Canadá. Northern Forestry Centre; Canadá
Fil: Benowicz, Andy. Alberta Forestry and Parks; Canadá
Fil: Munilla, Sebastián. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Animal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Unidad Ejecutora de Investigaciones en Producción Animal. Universidad de Buenos Aires. Facultad de Ciencias Veterinarias. Unidad Ejecutora de Investigaciones en Producción Animal; Argentina
Fil: Mansfield, Shawn D.. University of British Columbia; Canadá
Fil: Erbilgin, Nadir. University of Alberta; Canadá
Fil: Thomas, Barb R.. University of Alberta; Canadá
Fil: El-Kassaby, Yousry A.. University of British Columbia; Canadá
Materia
BAYESIAN NETWORKS
STRUCTURAL EQUATION MODEL
GENETIC CAUSAL EFFECTS
MULTIPLE-TRAIT ANALYSIS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/280987

id CONICETDig_5fc8fcc39d5719a3bd5ec8c7f9205627
oai_identifier_str oai:ri.conicet.gov.ar:11336/280987
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Bayesian networks and structural equation models reveal genetic causal relationships between productivity, defense, and climate-adaptability traits in interior lodgepole pineCappa, Eduardo PabloKlutsch, Jennifer G.Benowicz, AndyMunilla, SebastiánMansfield, Shawn D.Erbilgin, NadirThomas, Barb R.El-Kassaby, Yousry A.BAYESIAN NETWORKSSTRUCTURAL EQUATION MODELGENETIC CAUSAL EFFECTSMULTIPLE-TRAIT ANALYSIShttps://purl.org/becyt/ford/1.7https://purl.org/becyt/ford/1This study investigates the integration of Bayesian networks (BN) and structural equation models (SEM) to explore genomic relationships among nine traits related to productivity, defense, and climate-adaptability in an interior lodgepole pine breeding program. Data from 392 open-pollinated trees, genotyped with 25,099 SNP markers, were analyzed. The traditional multi-trait model (MTM) served as a benchmark for comparing SEM in estimating genetic (co)variance components, genetic correlations, breeding value (BV) predictions, and predictive ability, using both pedigree- (ABLUP) and genomic-based (GBLUP) individual-tree mixed models. The Hill-Climbing algorithm identified 12 significant causal structures (λ) among traits. Strong positive causal effects included tree height (HT) on wood density (WD) (λHT→WD = 0.413) and on stable carbon isotope ratio (C13) (λHT→C13 = 0.565), and limonene (LIMO) on carbon assimilation rate (CAR) (λLIMO→CAR = 0.368). The most influential causal relationship was HT → C13, followed by resistance to western gall rust (WGR) → CAR, CAR → LIMO, and WGR → C13. SEM incorporated these relationships, capturing both direct and indirect effects. Compared with MTM, SEM yielded lower residual variances, higher additive variances, and higher heritability estimates for all traits. The λ values from SEM correlated strongly with genetic correlations (0.932), with similarly high correlations between models (0.929), though SEM produced lower posterior mean correlations. BV correlations between models were high (ABLUP > 0.82, GBLUP > 0.84), but some reranking occurred among the top 39-trees (ABLUP > 0.71, GBLUP > 0.42). ABLUP and GBLUP-SEM models outperformed MTM in predictive ability, with mean gains of 6.62% and 6.03%, mainly for conditioned traits. BN-SEM enhances understanding of trait networks, improving genomic evaluations and breeding strategies in forest trees.Fil: Cappa, Eduardo Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Recursos Naturales. Instituto de Recursos Biológicos; ArgentinaFil: Klutsch, Jennifer G.. University of Alberta; Canadá. Northern Forestry Centre; CanadáFil: Benowicz, Andy. Alberta Forestry and Parks; CanadáFil: Munilla, Sebastián. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Animal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Unidad Ejecutora de Investigaciones en Producción Animal. Universidad de Buenos Aires. Facultad de Ciencias Veterinarias. Unidad Ejecutora de Investigaciones en Producción Animal; ArgentinaFil: Mansfield, Shawn D.. University of British Columbia; CanadáFil: Erbilgin, Nadir. University of Alberta; CanadáFil: Thomas, Barb R.. University of Alberta; CanadáFil: El-Kassaby, Yousry A.. University of British Columbia; CanadáOxford University Press2025-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/280987Cappa, Eduardo Pablo; Klutsch, Jennifer G.; Benowicz, Andy; Munilla, Sebastián; Mansfield, Shawn D.; et al.; Bayesian networks and structural equation models reveal genetic causal relationships between productivity, defense, and climate-adaptability traits in interior lodgepole pine; Oxford University Press; G3: Genes, Genomes, Genetics; 12-2025; 1-172160-1836CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/g3journal/advance-article/doi/10.1093/g3journal/jkaf308/8404500info:eu-repo/semantics/altIdentifier/doi/10.1093/g3journal/jkaf308info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2026-02-11T12:29:38Zoai:ri.conicet.gov.ar:11336/280987instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982026-02-11 12:29:38.296CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Bayesian networks and structural equation models reveal genetic causal relationships between productivity, defense, and climate-adaptability traits in interior lodgepole pine
title Bayesian networks and structural equation models reveal genetic causal relationships between productivity, defense, and climate-adaptability traits in interior lodgepole pine
spellingShingle Bayesian networks and structural equation models reveal genetic causal relationships between productivity, defense, and climate-adaptability traits in interior lodgepole pine
Cappa, Eduardo Pablo
BAYESIAN NETWORKS
STRUCTURAL EQUATION MODEL
GENETIC CAUSAL EFFECTS
MULTIPLE-TRAIT ANALYSIS
title_short Bayesian networks and structural equation models reveal genetic causal relationships between productivity, defense, and climate-adaptability traits in interior lodgepole pine
title_full Bayesian networks and structural equation models reveal genetic causal relationships between productivity, defense, and climate-adaptability traits in interior lodgepole pine
title_fullStr Bayesian networks and structural equation models reveal genetic causal relationships between productivity, defense, and climate-adaptability traits in interior lodgepole pine
title_full_unstemmed Bayesian networks and structural equation models reveal genetic causal relationships between productivity, defense, and climate-adaptability traits in interior lodgepole pine
title_sort Bayesian networks and structural equation models reveal genetic causal relationships between productivity, defense, and climate-adaptability traits in interior lodgepole pine
dc.creator.none.fl_str_mv Cappa, Eduardo Pablo
Klutsch, Jennifer G.
Benowicz, Andy
Munilla, Sebastián
Mansfield, Shawn D.
Erbilgin, Nadir
Thomas, Barb R.
El-Kassaby, Yousry A.
author Cappa, Eduardo Pablo
author_facet Cappa, Eduardo Pablo
Klutsch, Jennifer G.
Benowicz, Andy
Munilla, Sebastián
Mansfield, Shawn D.
Erbilgin, Nadir
Thomas, Barb R.
El-Kassaby, Yousry A.
author_role author
author2 Klutsch, Jennifer G.
Benowicz, Andy
Munilla, Sebastián
Mansfield, Shawn D.
Erbilgin, Nadir
Thomas, Barb R.
El-Kassaby, Yousry A.
author2_role author
author
author
author
author
author
author
dc.subject.none.fl_str_mv BAYESIAN NETWORKS
STRUCTURAL EQUATION MODEL
GENETIC CAUSAL EFFECTS
MULTIPLE-TRAIT ANALYSIS
topic BAYESIAN NETWORKS
STRUCTURAL EQUATION MODEL
GENETIC CAUSAL EFFECTS
MULTIPLE-TRAIT ANALYSIS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.7
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv This study investigates the integration of Bayesian networks (BN) and structural equation models (SEM) to explore genomic relationships among nine traits related to productivity, defense, and climate-adaptability in an interior lodgepole pine breeding program. Data from 392 open-pollinated trees, genotyped with 25,099 SNP markers, were analyzed. The traditional multi-trait model (MTM) served as a benchmark for comparing SEM in estimating genetic (co)variance components, genetic correlations, breeding value (BV) predictions, and predictive ability, using both pedigree- (ABLUP) and genomic-based (GBLUP) individual-tree mixed models. The Hill-Climbing algorithm identified 12 significant causal structures (λ) among traits. Strong positive causal effects included tree height (HT) on wood density (WD) (λHT→WD = 0.413) and on stable carbon isotope ratio (C13) (λHT→C13 = 0.565), and limonene (LIMO) on carbon assimilation rate (CAR) (λLIMO→CAR = 0.368). The most influential causal relationship was HT → C13, followed by resistance to western gall rust (WGR) → CAR, CAR → LIMO, and WGR → C13. SEM incorporated these relationships, capturing both direct and indirect effects. Compared with MTM, SEM yielded lower residual variances, higher additive variances, and higher heritability estimates for all traits. The λ values from SEM correlated strongly with genetic correlations (0.932), with similarly high correlations between models (0.929), though SEM produced lower posterior mean correlations. BV correlations between models were high (ABLUP > 0.82, GBLUP > 0.84), but some reranking occurred among the top 39-trees (ABLUP > 0.71, GBLUP > 0.42). ABLUP and GBLUP-SEM models outperformed MTM in predictive ability, with mean gains of 6.62% and 6.03%, mainly for conditioned traits. BN-SEM enhances understanding of trait networks, improving genomic evaluations and breeding strategies in forest trees.
Fil: Cappa, Eduardo Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Recursos Naturales. Instituto de Recursos Biológicos; Argentina
Fil: Klutsch, Jennifer G.. University of Alberta; Canadá. Northern Forestry Centre; Canadá
Fil: Benowicz, Andy. Alberta Forestry and Parks; Canadá
Fil: Munilla, Sebastián. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Animal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Unidad Ejecutora de Investigaciones en Producción Animal. Universidad de Buenos Aires. Facultad de Ciencias Veterinarias. Unidad Ejecutora de Investigaciones en Producción Animal; Argentina
Fil: Mansfield, Shawn D.. University of British Columbia; Canadá
Fil: Erbilgin, Nadir. University of Alberta; Canadá
Fil: Thomas, Barb R.. University of Alberta; Canadá
Fil: El-Kassaby, Yousry A.. University of British Columbia; Canadá
description This study investigates the integration of Bayesian networks (BN) and structural equation models (SEM) to explore genomic relationships among nine traits related to productivity, defense, and climate-adaptability in an interior lodgepole pine breeding program. Data from 392 open-pollinated trees, genotyped with 25,099 SNP markers, were analyzed. The traditional multi-trait model (MTM) served as a benchmark for comparing SEM in estimating genetic (co)variance components, genetic correlations, breeding value (BV) predictions, and predictive ability, using both pedigree- (ABLUP) and genomic-based (GBLUP) individual-tree mixed models. The Hill-Climbing algorithm identified 12 significant causal structures (λ) among traits. Strong positive causal effects included tree height (HT) on wood density (WD) (λHT→WD = 0.413) and on stable carbon isotope ratio (C13) (λHT→C13 = 0.565), and limonene (LIMO) on carbon assimilation rate (CAR) (λLIMO→CAR = 0.368). The most influential causal relationship was HT → C13, followed by resistance to western gall rust (WGR) → CAR, CAR → LIMO, and WGR → C13. SEM incorporated these relationships, capturing both direct and indirect effects. Compared with MTM, SEM yielded lower residual variances, higher additive variances, and higher heritability estimates for all traits. The λ values from SEM correlated strongly with genetic correlations (0.932), with similarly high correlations between models (0.929), though SEM produced lower posterior mean correlations. BV correlations between models were high (ABLUP > 0.82, GBLUP > 0.84), but some reranking occurred among the top 39-trees (ABLUP > 0.71, GBLUP > 0.42). ABLUP and GBLUP-SEM models outperformed MTM in predictive ability, with mean gains of 6.62% and 6.03%, mainly for conditioned traits. BN-SEM enhances understanding of trait networks, improving genomic evaluations and breeding strategies in forest trees.
publishDate 2025
dc.date.none.fl_str_mv 2025-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/280987
Cappa, Eduardo Pablo; Klutsch, Jennifer G.; Benowicz, Andy; Munilla, Sebastián; Mansfield, Shawn D.; et al.; Bayesian networks and structural equation models reveal genetic causal relationships between productivity, defense, and climate-adaptability traits in interior lodgepole pine; Oxford University Press; G3: Genes, Genomes, Genetics; 12-2025; 1-17
2160-1836
CONICET Digital
CONICET
url http://hdl.handle.net/11336/280987
identifier_str_mv Cappa, Eduardo Pablo; Klutsch, Jennifer G.; Benowicz, Andy; Munilla, Sebastián; Mansfield, Shawn D.; et al.; Bayesian networks and structural equation models reveal genetic causal relationships between productivity, defense, and climate-adaptability traits in interior lodgepole pine; Oxford University Press; G3: Genes, Genomes, Genetics; 12-2025; 1-17
2160-1836
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/g3journal/advance-article/doi/10.1093/g3journal/jkaf308/8404500
info:eu-repo/semantics/altIdentifier/doi/10.1093/g3journal/jkaf308
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Oxford University Press
publisher.none.fl_str_mv Oxford University Press
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1856945872858775552
score 12.930639