Bayesian networks and structural equation models reveal genetic causal relationships between productivity, defense, and climate-adaptability traits in interior lodgepole pine
- Autores
- Cappa, Eduardo Pablo; Klutsch, Jennifer G.; Benowicz, Andy; Munilla, Sebastián; Mansfield, Shawn D.; Erbilgin, Nadir; Thomas, Barb R.; El-Kassaby, Yousry A.
- Año de publicación
- 2025
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This study investigates the integration of Bayesian networks (BN) and structural equation models (SEM) to explore genomic relationships among nine traits related to productivity, defense, and climate-adaptability in an interior lodgepole pine breeding program. Data from 392 open-pollinated trees, genotyped with 25,099 SNP markers, were analyzed. The traditional multi-trait model (MTM) served as a benchmark for comparing SEM in estimating genetic (co)variance components, genetic correlations, breeding value (BV) predictions, and predictive ability, using both pedigree- (ABLUP) and genomic-based (GBLUP) individual-tree mixed models. The Hill-Climbing algorithm identified 12 significant causal structures (λ) among traits. Strong positive causal effects included tree height (HT) on wood density (WD) (λHT→WD = 0.413) and on stable carbon isotope ratio (C13) (λHT→C13 = 0.565), and limonene (LIMO) on carbon assimilation rate (CAR) (λLIMO→CAR = 0.368). The most influential causal relationship was HT → C13, followed by resistance to western gall rust (WGR) → CAR, CAR → LIMO, and WGR → C13. SEM incorporated these relationships, capturing both direct and indirect effects. Compared with MTM, SEM yielded lower residual variances, higher additive variances, and higher heritability estimates for all traits. The λ values from SEM correlated strongly with genetic correlations (0.932), with similarly high correlations between models (0.929), though SEM produced lower posterior mean correlations. BV correlations between models were high (ABLUP > 0.82, GBLUP > 0.84), but some reranking occurred among the top 39-trees (ABLUP > 0.71, GBLUP > 0.42). ABLUP and GBLUP-SEM models outperformed MTM in predictive ability, with mean gains of 6.62% and 6.03%, mainly for conditioned traits. BN-SEM enhances understanding of trait networks, improving genomic evaluations and breeding strategies in forest trees.
Fil: Cappa, Eduardo Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Recursos Naturales. Instituto de Recursos Biológicos; Argentina
Fil: Klutsch, Jennifer G.. University of Alberta; Canadá. Northern Forestry Centre; Canadá
Fil: Benowicz, Andy. Alberta Forestry and Parks; Canadá
Fil: Munilla, Sebastián. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Animal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Unidad Ejecutora de Investigaciones en Producción Animal. Universidad de Buenos Aires. Facultad de Ciencias Veterinarias. Unidad Ejecutora de Investigaciones en Producción Animal; Argentina
Fil: Mansfield, Shawn D.. University of British Columbia; Canadá
Fil: Erbilgin, Nadir. University of Alberta; Canadá
Fil: Thomas, Barb R.. University of Alberta; Canadá
Fil: El-Kassaby, Yousry A.. University of British Columbia; Canadá - Materia
-
BAYESIAN NETWORKS
STRUCTURAL EQUATION MODEL
GENETIC CAUSAL EFFECTS
MULTIPLE-TRAIT ANALYSIS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/280987
Ver los metadatos del registro completo
| id |
CONICETDig_5fc8fcc39d5719a3bd5ec8c7f9205627 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/280987 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Bayesian networks and structural equation models reveal genetic causal relationships between productivity, defense, and climate-adaptability traits in interior lodgepole pineCappa, Eduardo PabloKlutsch, Jennifer G.Benowicz, AndyMunilla, SebastiánMansfield, Shawn D.Erbilgin, NadirThomas, Barb R.El-Kassaby, Yousry A.BAYESIAN NETWORKSSTRUCTURAL EQUATION MODELGENETIC CAUSAL EFFECTSMULTIPLE-TRAIT ANALYSIShttps://purl.org/becyt/ford/1.7https://purl.org/becyt/ford/1This study investigates the integration of Bayesian networks (BN) and structural equation models (SEM) to explore genomic relationships among nine traits related to productivity, defense, and climate-adaptability in an interior lodgepole pine breeding program. Data from 392 open-pollinated trees, genotyped with 25,099 SNP markers, were analyzed. The traditional multi-trait model (MTM) served as a benchmark for comparing SEM in estimating genetic (co)variance components, genetic correlations, breeding value (BV) predictions, and predictive ability, using both pedigree- (ABLUP) and genomic-based (GBLUP) individual-tree mixed models. The Hill-Climbing algorithm identified 12 significant causal structures (λ) among traits. Strong positive causal effects included tree height (HT) on wood density (WD) (λHT→WD = 0.413) and on stable carbon isotope ratio (C13) (λHT→C13 = 0.565), and limonene (LIMO) on carbon assimilation rate (CAR) (λLIMO→CAR = 0.368). The most influential causal relationship was HT → C13, followed by resistance to western gall rust (WGR) → CAR, CAR → LIMO, and WGR → C13. SEM incorporated these relationships, capturing both direct and indirect effects. Compared with MTM, SEM yielded lower residual variances, higher additive variances, and higher heritability estimates for all traits. The λ values from SEM correlated strongly with genetic correlations (0.932), with similarly high correlations between models (0.929), though SEM produced lower posterior mean correlations. BV correlations between models were high (ABLUP > 0.82, GBLUP > 0.84), but some reranking occurred among the top 39-trees (ABLUP > 0.71, GBLUP > 0.42). ABLUP and GBLUP-SEM models outperformed MTM in predictive ability, with mean gains of 6.62% and 6.03%, mainly for conditioned traits. BN-SEM enhances understanding of trait networks, improving genomic evaluations and breeding strategies in forest trees.Fil: Cappa, Eduardo Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Recursos Naturales. Instituto de Recursos Biológicos; ArgentinaFil: Klutsch, Jennifer G.. University of Alberta; Canadá. Northern Forestry Centre; CanadáFil: Benowicz, Andy. Alberta Forestry and Parks; CanadáFil: Munilla, Sebastián. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Animal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Unidad Ejecutora de Investigaciones en Producción Animal. Universidad de Buenos Aires. Facultad de Ciencias Veterinarias. Unidad Ejecutora de Investigaciones en Producción Animal; ArgentinaFil: Mansfield, Shawn D.. University of British Columbia; CanadáFil: Erbilgin, Nadir. University of Alberta; CanadáFil: Thomas, Barb R.. University of Alberta; CanadáFil: El-Kassaby, Yousry A.. University of British Columbia; CanadáOxford University Press2025-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/280987Cappa, Eduardo Pablo; Klutsch, Jennifer G.; Benowicz, Andy; Munilla, Sebastián; Mansfield, Shawn D.; et al.; Bayesian networks and structural equation models reveal genetic causal relationships between productivity, defense, and climate-adaptability traits in interior lodgepole pine; Oxford University Press; G3: Genes, Genomes, Genetics; 12-2025; 1-172160-1836CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/g3journal/advance-article/doi/10.1093/g3journal/jkaf308/8404500info:eu-repo/semantics/altIdentifier/doi/10.1093/g3journal/jkaf308info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2026-02-11T12:29:38Zoai:ri.conicet.gov.ar:11336/280987instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982026-02-11 12:29:38.296CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Bayesian networks and structural equation models reveal genetic causal relationships between productivity, defense, and climate-adaptability traits in interior lodgepole pine |
| title |
Bayesian networks and structural equation models reveal genetic causal relationships between productivity, defense, and climate-adaptability traits in interior lodgepole pine |
| spellingShingle |
Bayesian networks and structural equation models reveal genetic causal relationships between productivity, defense, and climate-adaptability traits in interior lodgepole pine Cappa, Eduardo Pablo BAYESIAN NETWORKS STRUCTURAL EQUATION MODEL GENETIC CAUSAL EFFECTS MULTIPLE-TRAIT ANALYSIS |
| title_short |
Bayesian networks and structural equation models reveal genetic causal relationships between productivity, defense, and climate-adaptability traits in interior lodgepole pine |
| title_full |
Bayesian networks and structural equation models reveal genetic causal relationships between productivity, defense, and climate-adaptability traits in interior lodgepole pine |
| title_fullStr |
Bayesian networks and structural equation models reveal genetic causal relationships between productivity, defense, and climate-adaptability traits in interior lodgepole pine |
| title_full_unstemmed |
Bayesian networks and structural equation models reveal genetic causal relationships between productivity, defense, and climate-adaptability traits in interior lodgepole pine |
| title_sort |
Bayesian networks and structural equation models reveal genetic causal relationships between productivity, defense, and climate-adaptability traits in interior lodgepole pine |
| dc.creator.none.fl_str_mv |
Cappa, Eduardo Pablo Klutsch, Jennifer G. Benowicz, Andy Munilla, Sebastián Mansfield, Shawn D. Erbilgin, Nadir Thomas, Barb R. El-Kassaby, Yousry A. |
| author |
Cappa, Eduardo Pablo |
| author_facet |
Cappa, Eduardo Pablo Klutsch, Jennifer G. Benowicz, Andy Munilla, Sebastián Mansfield, Shawn D. Erbilgin, Nadir Thomas, Barb R. El-Kassaby, Yousry A. |
| author_role |
author |
| author2 |
Klutsch, Jennifer G. Benowicz, Andy Munilla, Sebastián Mansfield, Shawn D. Erbilgin, Nadir Thomas, Barb R. El-Kassaby, Yousry A. |
| author2_role |
author author author author author author author |
| dc.subject.none.fl_str_mv |
BAYESIAN NETWORKS STRUCTURAL EQUATION MODEL GENETIC CAUSAL EFFECTS MULTIPLE-TRAIT ANALYSIS |
| topic |
BAYESIAN NETWORKS STRUCTURAL EQUATION MODEL GENETIC CAUSAL EFFECTS MULTIPLE-TRAIT ANALYSIS |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.7 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
This study investigates the integration of Bayesian networks (BN) and structural equation models (SEM) to explore genomic relationships among nine traits related to productivity, defense, and climate-adaptability in an interior lodgepole pine breeding program. Data from 392 open-pollinated trees, genotyped with 25,099 SNP markers, were analyzed. The traditional multi-trait model (MTM) served as a benchmark for comparing SEM in estimating genetic (co)variance components, genetic correlations, breeding value (BV) predictions, and predictive ability, using both pedigree- (ABLUP) and genomic-based (GBLUP) individual-tree mixed models. The Hill-Climbing algorithm identified 12 significant causal structures (λ) among traits. Strong positive causal effects included tree height (HT) on wood density (WD) (λHT→WD = 0.413) and on stable carbon isotope ratio (C13) (λHT→C13 = 0.565), and limonene (LIMO) on carbon assimilation rate (CAR) (λLIMO→CAR = 0.368). The most influential causal relationship was HT → C13, followed by resistance to western gall rust (WGR) → CAR, CAR → LIMO, and WGR → C13. SEM incorporated these relationships, capturing both direct and indirect effects. Compared with MTM, SEM yielded lower residual variances, higher additive variances, and higher heritability estimates for all traits. The λ values from SEM correlated strongly with genetic correlations (0.932), with similarly high correlations between models (0.929), though SEM produced lower posterior mean correlations. BV correlations between models were high (ABLUP > 0.82, GBLUP > 0.84), but some reranking occurred among the top 39-trees (ABLUP > 0.71, GBLUP > 0.42). ABLUP and GBLUP-SEM models outperformed MTM in predictive ability, with mean gains of 6.62% and 6.03%, mainly for conditioned traits. BN-SEM enhances understanding of trait networks, improving genomic evaluations and breeding strategies in forest trees. Fil: Cappa, Eduardo Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Recursos Naturales. Instituto de Recursos Biológicos; Argentina Fil: Klutsch, Jennifer G.. University of Alberta; Canadá. Northern Forestry Centre; Canadá Fil: Benowicz, Andy. Alberta Forestry and Parks; Canadá Fil: Munilla, Sebastián. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Animal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Unidad Ejecutora de Investigaciones en Producción Animal. Universidad de Buenos Aires. Facultad de Ciencias Veterinarias. Unidad Ejecutora de Investigaciones en Producción Animal; Argentina Fil: Mansfield, Shawn D.. University of British Columbia; Canadá Fil: Erbilgin, Nadir. University of Alberta; Canadá Fil: Thomas, Barb R.. University of Alberta; Canadá Fil: El-Kassaby, Yousry A.. University of British Columbia; Canadá |
| description |
This study investigates the integration of Bayesian networks (BN) and structural equation models (SEM) to explore genomic relationships among nine traits related to productivity, defense, and climate-adaptability in an interior lodgepole pine breeding program. Data from 392 open-pollinated trees, genotyped with 25,099 SNP markers, were analyzed. The traditional multi-trait model (MTM) served as a benchmark for comparing SEM in estimating genetic (co)variance components, genetic correlations, breeding value (BV) predictions, and predictive ability, using both pedigree- (ABLUP) and genomic-based (GBLUP) individual-tree mixed models. The Hill-Climbing algorithm identified 12 significant causal structures (λ) among traits. Strong positive causal effects included tree height (HT) on wood density (WD) (λHT→WD = 0.413) and on stable carbon isotope ratio (C13) (λHT→C13 = 0.565), and limonene (LIMO) on carbon assimilation rate (CAR) (λLIMO→CAR = 0.368). The most influential causal relationship was HT → C13, followed by resistance to western gall rust (WGR) → CAR, CAR → LIMO, and WGR → C13. SEM incorporated these relationships, capturing both direct and indirect effects. Compared with MTM, SEM yielded lower residual variances, higher additive variances, and higher heritability estimates for all traits. The λ values from SEM correlated strongly with genetic correlations (0.932), with similarly high correlations between models (0.929), though SEM produced lower posterior mean correlations. BV correlations between models were high (ABLUP > 0.82, GBLUP > 0.84), but some reranking occurred among the top 39-trees (ABLUP > 0.71, GBLUP > 0.42). ABLUP and GBLUP-SEM models outperformed MTM in predictive ability, with mean gains of 6.62% and 6.03%, mainly for conditioned traits. BN-SEM enhances understanding of trait networks, improving genomic evaluations and breeding strategies in forest trees. |
| publishDate |
2025 |
| dc.date.none.fl_str_mv |
2025-12 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/280987 Cappa, Eduardo Pablo; Klutsch, Jennifer G.; Benowicz, Andy; Munilla, Sebastián; Mansfield, Shawn D.; et al.; Bayesian networks and structural equation models reveal genetic causal relationships between productivity, defense, and climate-adaptability traits in interior lodgepole pine; Oxford University Press; G3: Genes, Genomes, Genetics; 12-2025; 1-17 2160-1836 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/280987 |
| identifier_str_mv |
Cappa, Eduardo Pablo; Klutsch, Jennifer G.; Benowicz, Andy; Munilla, Sebastián; Mansfield, Shawn D.; et al.; Bayesian networks and structural equation models reveal genetic causal relationships between productivity, defense, and climate-adaptability traits in interior lodgepole pine; Oxford University Press; G3: Genes, Genomes, Genetics; 12-2025; 1-17 2160-1836 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/g3journal/advance-article/doi/10.1093/g3journal/jkaf308/8404500 info:eu-repo/semantics/altIdentifier/doi/10.1093/g3journal/jkaf308 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Oxford University Press |
| publisher.none.fl_str_mv |
Oxford University Press |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1856945872858775552 |
| score |
12.930639 |