Multiple‑trait analyses improved the accuracy of genomic prediction and the power of genome‑wide association of productivity and climate change‑adaptive traits in lodgepole pine...
- Autores
- Cappa, Eduardo Pablo; Chen, Charles; Klutsch, Jennifer G.; Sebastian-Azcona, Jaime; Ratcliffe, Blaise; Wei, Xiaojing; Da Ros, Letitia; Ullan, Aziz; Liu, Yang; Bernowicz, Andy; Sadoway, Shane; Mansfield, Shawn D.; Erbilgin, Nadir; Thomas, Barb R.; El-Kassaby, Yousry A.
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Genomic prediction (GP) and genome-wide association (GWA) analyses are currently being employed to accelerate breeding cycles and to identify alleles or genomic regions of complex traits in forest trees species. Here, 1490 interior lodgepole pine (Pinus contorta Dougl. ex. Loud. var. latifolia Engelm) trees from four open-pollinated progeny trials were genotyped with 25,099 SNPs, and phenotyped for 15 growth, wood quality, pest resistance, drought tolerance, and defense chemical (monoterpenes) traits. The main objectives of this study were to: (1) identify genetic markers associated with these traits and determine their genetic architecture, and to compare the marker detected by single- (ST) and multiple-trait (MT) GWA models; (2) evaluate and compare the accuracy and control of bias of the genomic predictions for these traits underlying different ST and MT parametric and non-parametric GP methods. GWA, ST and MT analyses were compared using a linear transformation of genomic breeding values fromn the respective genomic best linear unbiased prediction (GBLUP) model. GP, ST and MT parametric and non-parametric (Reproducing Kernel Hilbert Spaces, RKHS) models were compared in terms of prediction accuracy (PA) and control of bias.
Instituto de Recursos Biológicos
Fil: Cappa, Eduardo Pablo. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Recursos Biológicos; Argentina
Fil: Chen, Charles. Oklahoma State University. Department of Biochemistry and Molecular Biology; Estados Unidos
Fil: Klutsch, Jennifer G. University of Alberta. Department of Renewable Resources; Canadá
Fil: Sebastian-Azcona, Jaime. University of Alberta. Department of Renewable Resources; Canadá
Fil: Ratchiffe, Blaise. University of British Columbia. Faculty of Forestry. Department of Forest and Conservation Sciences; Canadá
Fil: Wei, Xiaojing. University of Alberta; Department of Renewable Resources; Canada
Fil: Da Ros, Letitia. University of British Columbia. Faculty of Forestry. Department of Wood Science; Canadá
Fil: Ullah, Aziz. University of Alberta. Department of Renewable Resources; Canadá
Fil: Liu, Yang. University of British Columbia. Faculty of Forestry. Department of Forest and Conservation Sciences; Canadá
Fil: Benowicz, Andy. Alberta Agriculture and Forestry. Forest Stewardship and Trade Branch; Canadá
Fil: Sadoway, Shane. Blue Ridge Lumber Inc.; Canadá
Fil: Mansfield, Shawn D. University of British Columbia. Faculty of Forestry. Department of Wood Science; Canadá
Fil: Erbilgin, Nadir. University of Alberta. Department of Renewable Resources; Canadá
Fil: Thomas, Barb R. University of Alberta. Department of Renewable Resources; Canada
Fil: El-Kassaby, Yousry A. University of British Columbia. Faculty of Forestry. Department of Forest and Conservation Sciences; Canadá - Fuente
- BMC Genomics 23 : Article number: 536 (2022)
- Materia
-
Quantitative Genetics
Marker-assisted Selection
Genome-wide Association Studies
Parameters
Genética Quantitativa
Selección Asistida por Marcadores
Estudios de Asociación del Genoma Completo
Pinus contorta
Parámetros
Genomic Prediction
Single and Multiple Trait Mixed Models
Predicción Genómica
Modelos Mixtos de Rasgos Unicos y Múltiples - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
.jpg)
- Institución
- Instituto Nacional de Tecnología Agropecuaria
- OAI Identificador
- oai:localhost:20.500.12123/14342
Ver los metadatos del registro completo
| id |
INTADig_3c39842aba9289f789b75f3e4b1e9e55 |
|---|---|
| oai_identifier_str |
oai:localhost:20.500.12123/14342 |
| network_acronym_str |
INTADig |
| repository_id_str |
l |
| network_name_str |
INTA Digital (INTA) |
| spelling |
Multiple‑trait analyses improved the accuracy of genomic prediction and the power of genome‑wide association of productivity and climate change‑adaptive traits in lodgepole pineCappa, Eduardo PabloChen, CharlesKlutsch, Jennifer G.Sebastian-Azcona, JaimeRatcliffe, BlaiseWei, XiaojingDa Ros, LetitiaUllan, AzizLiu, YangBernowicz, AndySadoway, ShaneMansfield, Shawn D.Erbilgin, NadirThomas, Barb R.El-Kassaby, Yousry A.Quantitative GeneticsMarker-assisted SelectionGenome-wide Association StudiesParametersGenética QuantitativaSelección Asistida por MarcadoresEstudios de Asociación del Genoma CompletoPinus contortaParámetrosGenomic PredictionSingle and Multiple Trait Mixed ModelsPredicción GenómicaModelos Mixtos de Rasgos Unicos y MúltiplesGenomic prediction (GP) and genome-wide association (GWA) analyses are currently being employed to accelerate breeding cycles and to identify alleles or genomic regions of complex traits in forest trees species. Here, 1490 interior lodgepole pine (Pinus contorta Dougl. ex. Loud. var. latifolia Engelm) trees from four open-pollinated progeny trials were genotyped with 25,099 SNPs, and phenotyped for 15 growth, wood quality, pest resistance, drought tolerance, and defense chemical (monoterpenes) traits. The main objectives of this study were to: (1) identify genetic markers associated with these traits and determine their genetic architecture, and to compare the marker detected by single- (ST) and multiple-trait (MT) GWA models; (2) evaluate and compare the accuracy and control of bias of the genomic predictions for these traits underlying different ST and MT parametric and non-parametric GP methods. GWA, ST and MT analyses were compared using a linear transformation of genomic breeding values fromn the respective genomic best linear unbiased prediction (GBLUP) model. GP, ST and MT parametric and non-parametric (Reproducing Kernel Hilbert Spaces, RKHS) models were compared in terms of prediction accuracy (PA) and control of bias.Instituto de Recursos BiológicosFil: Cappa, Eduardo Pablo. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Recursos Biológicos; ArgentinaFil: Chen, Charles. Oklahoma State University. Department of Biochemistry and Molecular Biology; Estados UnidosFil: Klutsch, Jennifer G. University of Alberta. Department of Renewable Resources; CanadáFil: Sebastian-Azcona, Jaime. University of Alberta. Department of Renewable Resources; CanadáFil: Ratchiffe, Blaise. University of British Columbia. Faculty of Forestry. Department of Forest and Conservation Sciences; CanadáFil: Wei, Xiaojing. University of Alberta; Department of Renewable Resources; CanadaFil: Da Ros, Letitia. University of British Columbia. Faculty of Forestry. Department of Wood Science; CanadáFil: Ullah, Aziz. University of Alberta. Department of Renewable Resources; CanadáFil: Liu, Yang. University of British Columbia. Faculty of Forestry. Department of Forest and Conservation Sciences; CanadáFil: Benowicz, Andy. Alberta Agriculture and Forestry. Forest Stewardship and Trade Branch; CanadáFil: Sadoway, Shane. Blue Ridge Lumber Inc.; CanadáFil: Mansfield, Shawn D. University of British Columbia. Faculty of Forestry. Department of Wood Science; CanadáFil: Erbilgin, Nadir. University of Alberta. Department of Renewable Resources; CanadáFil: Thomas, Barb R. University of Alberta. Department of Renewable Resources; CanadaFil: El-Kassaby, Yousry A. University of British Columbia. Faculty of Forestry. Department of Forest and Conservation Sciences; CanadáBMC2023-03-28T18:14:33Z2023-03-28T18:14:33Z2022-07-23info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/14342https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-022-08747-71976-95712092-9293https://doi.org/10.1186/s12864-022-08747-7BMC Genomics 23 : Article number: 536 (2022)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-10-23T11:18:19Zoai:localhost:20.500.12123/14342instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-10-23 11:18:20.079INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse |
| dc.title.none.fl_str_mv |
Multiple‑trait analyses improved the accuracy of genomic prediction and the power of genome‑wide association of productivity and climate change‑adaptive traits in lodgepole pine |
| title |
Multiple‑trait analyses improved the accuracy of genomic prediction and the power of genome‑wide association of productivity and climate change‑adaptive traits in lodgepole pine |
| spellingShingle |
Multiple‑trait analyses improved the accuracy of genomic prediction and the power of genome‑wide association of productivity and climate change‑adaptive traits in lodgepole pine Cappa, Eduardo Pablo Quantitative Genetics Marker-assisted Selection Genome-wide Association Studies Parameters Genética Quantitativa Selección Asistida por Marcadores Estudios de Asociación del Genoma Completo Pinus contorta Parámetros Genomic Prediction Single and Multiple Trait Mixed Models Predicción Genómica Modelos Mixtos de Rasgos Unicos y Múltiples |
| title_short |
Multiple‑trait analyses improved the accuracy of genomic prediction and the power of genome‑wide association of productivity and climate change‑adaptive traits in lodgepole pine |
| title_full |
Multiple‑trait analyses improved the accuracy of genomic prediction and the power of genome‑wide association of productivity and climate change‑adaptive traits in lodgepole pine |
| title_fullStr |
Multiple‑trait analyses improved the accuracy of genomic prediction and the power of genome‑wide association of productivity and climate change‑adaptive traits in lodgepole pine |
| title_full_unstemmed |
Multiple‑trait analyses improved the accuracy of genomic prediction and the power of genome‑wide association of productivity and climate change‑adaptive traits in lodgepole pine |
| title_sort |
Multiple‑trait analyses improved the accuracy of genomic prediction and the power of genome‑wide association of productivity and climate change‑adaptive traits in lodgepole pine |
| dc.creator.none.fl_str_mv |
Cappa, Eduardo Pablo Chen, Charles Klutsch, Jennifer G. Sebastian-Azcona, Jaime Ratcliffe, Blaise Wei, Xiaojing Da Ros, Letitia Ullan, Aziz Liu, Yang Bernowicz, Andy Sadoway, Shane Mansfield, Shawn D. Erbilgin, Nadir Thomas, Barb R. El-Kassaby, Yousry A. |
| author |
Cappa, Eduardo Pablo |
| author_facet |
Cappa, Eduardo Pablo Chen, Charles Klutsch, Jennifer G. Sebastian-Azcona, Jaime Ratcliffe, Blaise Wei, Xiaojing Da Ros, Letitia Ullan, Aziz Liu, Yang Bernowicz, Andy Sadoway, Shane Mansfield, Shawn D. Erbilgin, Nadir Thomas, Barb R. El-Kassaby, Yousry A. |
| author_role |
author |
| author2 |
Chen, Charles Klutsch, Jennifer G. Sebastian-Azcona, Jaime Ratcliffe, Blaise Wei, Xiaojing Da Ros, Letitia Ullan, Aziz Liu, Yang Bernowicz, Andy Sadoway, Shane Mansfield, Shawn D. Erbilgin, Nadir Thomas, Barb R. El-Kassaby, Yousry A. |
| author2_role |
author author author author author author author author author author author author author author |
| dc.subject.none.fl_str_mv |
Quantitative Genetics Marker-assisted Selection Genome-wide Association Studies Parameters Genética Quantitativa Selección Asistida por Marcadores Estudios de Asociación del Genoma Completo Pinus contorta Parámetros Genomic Prediction Single and Multiple Trait Mixed Models Predicción Genómica Modelos Mixtos de Rasgos Unicos y Múltiples |
| topic |
Quantitative Genetics Marker-assisted Selection Genome-wide Association Studies Parameters Genética Quantitativa Selección Asistida por Marcadores Estudios de Asociación del Genoma Completo Pinus contorta Parámetros Genomic Prediction Single and Multiple Trait Mixed Models Predicción Genómica Modelos Mixtos de Rasgos Unicos y Múltiples |
| dc.description.none.fl_txt_mv |
Genomic prediction (GP) and genome-wide association (GWA) analyses are currently being employed to accelerate breeding cycles and to identify alleles or genomic regions of complex traits in forest trees species. Here, 1490 interior lodgepole pine (Pinus contorta Dougl. ex. Loud. var. latifolia Engelm) trees from four open-pollinated progeny trials were genotyped with 25,099 SNPs, and phenotyped for 15 growth, wood quality, pest resistance, drought tolerance, and defense chemical (monoterpenes) traits. The main objectives of this study were to: (1) identify genetic markers associated with these traits and determine their genetic architecture, and to compare the marker detected by single- (ST) and multiple-trait (MT) GWA models; (2) evaluate and compare the accuracy and control of bias of the genomic predictions for these traits underlying different ST and MT parametric and non-parametric GP methods. GWA, ST and MT analyses were compared using a linear transformation of genomic breeding values fromn the respective genomic best linear unbiased prediction (GBLUP) model. GP, ST and MT parametric and non-parametric (Reproducing Kernel Hilbert Spaces, RKHS) models were compared in terms of prediction accuracy (PA) and control of bias. Instituto de Recursos Biológicos Fil: Cappa, Eduardo Pablo. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Recursos Biológicos; Argentina Fil: Chen, Charles. Oklahoma State University. Department of Biochemistry and Molecular Biology; Estados Unidos Fil: Klutsch, Jennifer G. University of Alberta. Department of Renewable Resources; Canadá Fil: Sebastian-Azcona, Jaime. University of Alberta. Department of Renewable Resources; Canadá Fil: Ratchiffe, Blaise. University of British Columbia. Faculty of Forestry. Department of Forest and Conservation Sciences; Canadá Fil: Wei, Xiaojing. University of Alberta; Department of Renewable Resources; Canada Fil: Da Ros, Letitia. University of British Columbia. Faculty of Forestry. Department of Wood Science; Canadá Fil: Ullah, Aziz. University of Alberta. Department of Renewable Resources; Canadá Fil: Liu, Yang. University of British Columbia. Faculty of Forestry. Department of Forest and Conservation Sciences; Canadá Fil: Benowicz, Andy. Alberta Agriculture and Forestry. Forest Stewardship and Trade Branch; Canadá Fil: Sadoway, Shane. Blue Ridge Lumber Inc.; Canadá Fil: Mansfield, Shawn D. University of British Columbia. Faculty of Forestry. Department of Wood Science; Canadá Fil: Erbilgin, Nadir. University of Alberta. Department of Renewable Resources; Canadá Fil: Thomas, Barb R. University of Alberta. Department of Renewable Resources; Canada Fil: El-Kassaby, Yousry A. University of British Columbia. Faculty of Forestry. Department of Forest and Conservation Sciences; Canadá |
| description |
Genomic prediction (GP) and genome-wide association (GWA) analyses are currently being employed to accelerate breeding cycles and to identify alleles or genomic regions of complex traits in forest trees species. Here, 1490 interior lodgepole pine (Pinus contorta Dougl. ex. Loud. var. latifolia Engelm) trees from four open-pollinated progeny trials were genotyped with 25,099 SNPs, and phenotyped for 15 growth, wood quality, pest resistance, drought tolerance, and defense chemical (monoterpenes) traits. The main objectives of this study were to: (1) identify genetic markers associated with these traits and determine their genetic architecture, and to compare the marker detected by single- (ST) and multiple-trait (MT) GWA models; (2) evaluate and compare the accuracy and control of bias of the genomic predictions for these traits underlying different ST and MT parametric and non-parametric GP methods. GWA, ST and MT analyses were compared using a linear transformation of genomic breeding values fromn the respective genomic best linear unbiased prediction (GBLUP) model. GP, ST and MT parametric and non-parametric (Reproducing Kernel Hilbert Spaces, RKHS) models were compared in terms of prediction accuracy (PA) and control of bias. |
| publishDate |
2022 |
| dc.date.none.fl_str_mv |
2022-07-23 2023-03-28T18:14:33Z 2023-03-28T18:14:33Z |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12123/14342 https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-022-08747-7 1976-9571 2092-9293 https://doi.org/10.1186/s12864-022-08747-7 |
| url |
http://hdl.handle.net/20.500.12123/14342 https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-022-08747-7 https://doi.org/10.1186/s12864-022-08747-7 |
| identifier_str_mv |
1976-9571 2092-9293 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
BMC |
| publisher.none.fl_str_mv |
BMC |
| dc.source.none.fl_str_mv |
BMC Genomics 23 : Article number: 536 (2022) reponame:INTA Digital (INTA) instname:Instituto Nacional de Tecnología Agropecuaria |
| reponame_str |
INTA Digital (INTA) |
| collection |
INTA Digital (INTA) |
| instname_str |
Instituto Nacional de Tecnología Agropecuaria |
| repository.name.fl_str_mv |
INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria |
| repository.mail.fl_str_mv |
tripaldi.nicolas@inta.gob.ar |
| _version_ |
1846787569261477888 |
| score |
12.982451 |