Ocean biogeochemistry control on the marine emissions of brominated very short‐lived ozone‐depleting substances: A machine‐learning approach
- Autores
- Wang, Siyuan; Kinnison, Douglas E.; Montzka, Stephen A.; Apel, Eric C.; Hornbrook, Rebecca S.; Hills, Alan J.; Blake, Donald R.; Barletta, Barbara; Meinardi, Simone; Sweeney, Colm; Moore, Fred; Long, Matthew; Saiz-lopez, Alfonso; Fernandez, Rafael Pedro; Tilmes, Simone; Emmons, Louisa K.; Lamarque, Jean-François
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Halogenated very short lived substances (VSLS) affect the ozone budget in the atmosphere. Brominated VSLS are naturally emitted from the ocean, and current oceanic emission inventories vary dramatically. We present a new global oceanic emission inventory of Br‐VSLS (bromoform and dibromomethane), considering the physical forcing in the ocean and the atmosphere, as well as the ocean
biogeochemistry control. A data‐oriented machine‐learning emulator was developed to couple the air‐sea exchange with the ocean biogeochemistry. The predicted surface seawater concentrations and the surface atmospheric mixing ratios of Br‐VSLS are evaluated with long‐term, global‐scale observations; and the predicted vertical distributions of Br‐VSLS are compared to the global airborne observations in both boreal summer and winter. The global marine emissions of bromoform and dibromomethane are estimated to be 385 and 54 Gg Br per year, respectively. The new oceanic emission inventory of Br‐VSLS is more skillful than the widely used top‐down approaches for representing the seasonal/spatial variations and the
annual means of atmospheric concentrations. The new approach improves the model predictability for the coupled Earth system model and can be used as a basis for investigating the past and future ocean emissions and feedbacks under climate change. This model framework can be used to calculate the bidirectional oceanic fluxes for other compounds of interest.
Fil: Wang, Siyuan. National Center for Atmospheric Research; Estados Unidos
Fil: Kinnison, Douglas E.. National Center for Atmospheric Research; Estados Unidos
Fil: Montzka, Stephen A.. National Oceanic & Atmospheric Administration; Estados Unidos
Fil: Apel, Eric C.. University of California. Department of Chemistry; Estados Unidos
Fil: Hornbrook, Rebecca S.. National Center for Atmospheric Research; Estados Unidos
Fil: Hills, Alan J.. National Center for Atmospheric Research; Estados Unidos
Fil: Blake, Donald R.. University of California at Irvine; Estados Unidos
Fil: Barletta, Barbara. University of California at Irvine; Estados Unidos
Fil: Meinardi, Simone. University of California at Irvine; Estados Unidos
Fil: Sweeney, Colm. National Oceanic & Atmospheric Administration; Estados Unidos
Fil: Moore, Fred. National Oceanic & Atmospheric Administration; Estados Unidos
Fil: Long, Matthew. National Center for Atmospheric Research; Estados Unidos
Fil: Saiz-lopez, Alfonso. Instituteof Physical Chemistry Rocasolano. Department of Atmospheric Chemistry and Climate; España
Fil: Fernandez, Rafael Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Universidad Tecnológica Nacional. Facultad Regional Mendoza; Argentina
Fil: Tilmes, Simone. National Center for Atmospheric Research; Estados Unidos
Fil: Emmons, Louisa K.. National Center for Atmospheric Research; Estados Unidos
Fil: Lamarque, Jean-François. National Center for Atmospheric Research; Estados Unidos - Materia
-
MACHINE LEARNING APPROACH
HALÓGENOS VSL
CAM-CHEM
EMISIONES OCEÁNICAS - Nivel de accesibilidad
- acceso embargado
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/110384
Ver los metadatos del registro completo
id |
CONICETDig_5f6ee0981ac81624cdef93fe2a2f262f |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/110384 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Ocean biogeochemistry control on the marine emissions of brominated very short‐lived ozone‐depleting substances: A machine‐learning approachWang, SiyuanKinnison, Douglas E.Montzka, Stephen A.Apel, Eric C.Hornbrook, Rebecca S.Hills, Alan J.Blake, Donald R.Barletta, BarbaraMeinardi, SimoneSweeney, ColmMoore, FredLong, MatthewSaiz-lopez, AlfonsoFernandez, Rafael PedroTilmes, SimoneEmmons, Louisa K.Lamarque, Jean-FrançoisMACHINE LEARNING APPROACHHALÓGENOS VSLCAM-CHEMEMISIONES OCEÁNICAShttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Halogenated very short lived substances (VSLS) affect the ozone budget in the atmosphere. Brominated VSLS are naturally emitted from the ocean, and current oceanic emission inventories vary dramatically. We present a new global oceanic emission inventory of Br‐VSLS (bromoform and dibromomethane), considering the physical forcing in the ocean and the atmosphere, as well as the ocean<br />biogeochemistry control. A data‐oriented machine‐learning emulator was developed to couple the air‐sea exchange with the ocean biogeochemistry. The predicted surface seawater concentrations and the surface atmospheric mixing ratios of Br‐VSLS are evaluated with long‐term, global‐scale observations; and the predicted vertical distributions of Br‐VSLS are compared to the global airborne observations in both boreal summer and winter. The global marine emissions of bromoform and dibromomethane are estimated to be 385 and 54 Gg Br per year, respectively. The new oceanic emission inventory of Br‐VSLS is more skillful than the widely used top‐down approaches for representing the seasonal/spatial variations and the<br />annual means of atmospheric concentrations. The new approach improves the model predictability for the coupled Earth system model and can be used as a basis for investigating the past and future ocean emissions and feedbacks under climate change. This model framework can be used to calculate the bidirectional oceanic fluxes for other compounds of interest.Fil: Wang, Siyuan. National Center for Atmospheric Research; Estados UnidosFil: Kinnison, Douglas E.. National Center for Atmospheric Research; Estados UnidosFil: Montzka, Stephen A.. National Oceanic & Atmospheric Administration; Estados UnidosFil: Apel, Eric C.. University of California. Department of Chemistry; Estados UnidosFil: Hornbrook, Rebecca S.. National Center for Atmospheric Research; Estados UnidosFil: Hills, Alan J.. National Center for Atmospheric Research; Estados UnidosFil: Blake, Donald R.. University of California at Irvine; Estados UnidosFil: Barletta, Barbara. University of California at Irvine; Estados UnidosFil: Meinardi, Simone. University of California at Irvine; Estados UnidosFil: Sweeney, Colm. National Oceanic & Atmospheric Administration; Estados UnidosFil: Moore, Fred. National Oceanic & Atmospheric Administration; Estados UnidosFil: Long, Matthew. National Center for Atmospheric Research; Estados UnidosFil: Saiz-lopez, Alfonso. Instituteof Physical Chemistry Rocasolano. Department of Atmospheric Chemistry and Climate; EspañaFil: Fernandez, Rafael Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Universidad Tecnológica Nacional. Facultad Regional Mendoza; ArgentinaFil: Tilmes, Simone. National Center for Atmospheric Research; Estados UnidosFil: Emmons, Louisa K.. National Center for Atmospheric Research; Estados UnidosFil: Lamarque, Jean-François. National Center for Atmospheric Research; Estados UnidosAmerican Geophysical Union (AGU)2019-11info:eu-repo/date/embargoEnd/2020-07-31info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/110384Wang, Siyuan; Kinnison, Douglas E.; Montzka, Stephen A.; Apel, Eric C.; Hornbrook, Rebecca S.; et al.; Ocean biogeochemistry control on the marine emissions of brominated very short‐lived ozone‐depleting substances: A machine‐learning approach; American Geophysical Union (AGU); Journal of Geophysical Research: Atmospheres; 124; 12; 11-2019; 319-3392169-89962169-897XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1029/2019JD031288info:eu-repo/semantics/altIdentifier/doi/10.1029/2019JD031288info:eu-repo/semantics/embargoedAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:02:40Zoai:ri.conicet.gov.ar:11336/110384instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:02:40.864CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Ocean biogeochemistry control on the marine emissions of brominated very short‐lived ozone‐depleting substances: A machine‐learning approach |
title |
Ocean biogeochemistry control on the marine emissions of brominated very short‐lived ozone‐depleting substances: A machine‐learning approach |
spellingShingle |
Ocean biogeochemistry control on the marine emissions of brominated very short‐lived ozone‐depleting substances: A machine‐learning approach Wang, Siyuan MACHINE LEARNING APPROACH HALÓGENOS VSL CAM-CHEM EMISIONES OCEÁNICAS |
title_short |
Ocean biogeochemistry control on the marine emissions of brominated very short‐lived ozone‐depleting substances: A machine‐learning approach |
title_full |
Ocean biogeochemistry control on the marine emissions of brominated very short‐lived ozone‐depleting substances: A machine‐learning approach |
title_fullStr |
Ocean biogeochemistry control on the marine emissions of brominated very short‐lived ozone‐depleting substances: A machine‐learning approach |
title_full_unstemmed |
Ocean biogeochemistry control on the marine emissions of brominated very short‐lived ozone‐depleting substances: A machine‐learning approach |
title_sort |
Ocean biogeochemistry control on the marine emissions of brominated very short‐lived ozone‐depleting substances: A machine‐learning approach |
dc.creator.none.fl_str_mv |
Wang, Siyuan Kinnison, Douglas E. Montzka, Stephen A. Apel, Eric C. Hornbrook, Rebecca S. Hills, Alan J. Blake, Donald R. Barletta, Barbara Meinardi, Simone Sweeney, Colm Moore, Fred Long, Matthew Saiz-lopez, Alfonso Fernandez, Rafael Pedro Tilmes, Simone Emmons, Louisa K. Lamarque, Jean-François |
author |
Wang, Siyuan |
author_facet |
Wang, Siyuan Kinnison, Douglas E. Montzka, Stephen A. Apel, Eric C. Hornbrook, Rebecca S. Hills, Alan J. Blake, Donald R. Barletta, Barbara Meinardi, Simone Sweeney, Colm Moore, Fred Long, Matthew Saiz-lopez, Alfonso Fernandez, Rafael Pedro Tilmes, Simone Emmons, Louisa K. Lamarque, Jean-François |
author_role |
author |
author2 |
Kinnison, Douglas E. Montzka, Stephen A. Apel, Eric C. Hornbrook, Rebecca S. Hills, Alan J. Blake, Donald R. Barletta, Barbara Meinardi, Simone Sweeney, Colm Moore, Fred Long, Matthew Saiz-lopez, Alfonso Fernandez, Rafael Pedro Tilmes, Simone Emmons, Louisa K. Lamarque, Jean-François |
author2_role |
author author author author author author author author author author author author author author author author |
dc.subject.none.fl_str_mv |
MACHINE LEARNING APPROACH HALÓGENOS VSL CAM-CHEM EMISIONES OCEÁNICAS |
topic |
MACHINE LEARNING APPROACH HALÓGENOS VSL CAM-CHEM EMISIONES OCEÁNICAS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Halogenated very short lived substances (VSLS) affect the ozone budget in the atmosphere. Brominated VSLS are naturally emitted from the ocean, and current oceanic emission inventories vary dramatically. We present a new global oceanic emission inventory of Br‐VSLS (bromoform and dibromomethane), considering the physical forcing in the ocean and the atmosphere, as well as the ocean<br />biogeochemistry control. A data‐oriented machine‐learning emulator was developed to couple the air‐sea exchange with the ocean biogeochemistry. The predicted surface seawater concentrations and the surface atmospheric mixing ratios of Br‐VSLS are evaluated with long‐term, global‐scale observations; and the predicted vertical distributions of Br‐VSLS are compared to the global airborne observations in both boreal summer and winter. The global marine emissions of bromoform and dibromomethane are estimated to be 385 and 54 Gg Br per year, respectively. The new oceanic emission inventory of Br‐VSLS is more skillful than the widely used top‐down approaches for representing the seasonal/spatial variations and the<br />annual means of atmospheric concentrations. The new approach improves the model predictability for the coupled Earth system model and can be used as a basis for investigating the past and future ocean emissions and feedbacks under climate change. This model framework can be used to calculate the bidirectional oceanic fluxes for other compounds of interest. Fil: Wang, Siyuan. National Center for Atmospheric Research; Estados Unidos Fil: Kinnison, Douglas E.. National Center for Atmospheric Research; Estados Unidos Fil: Montzka, Stephen A.. National Oceanic & Atmospheric Administration; Estados Unidos Fil: Apel, Eric C.. University of California. Department of Chemistry; Estados Unidos Fil: Hornbrook, Rebecca S.. National Center for Atmospheric Research; Estados Unidos Fil: Hills, Alan J.. National Center for Atmospheric Research; Estados Unidos Fil: Blake, Donald R.. University of California at Irvine; Estados Unidos Fil: Barletta, Barbara. University of California at Irvine; Estados Unidos Fil: Meinardi, Simone. University of California at Irvine; Estados Unidos Fil: Sweeney, Colm. National Oceanic & Atmospheric Administration; Estados Unidos Fil: Moore, Fred. National Oceanic & Atmospheric Administration; Estados Unidos Fil: Long, Matthew. National Center for Atmospheric Research; Estados Unidos Fil: Saiz-lopez, Alfonso. Instituteof Physical Chemistry Rocasolano. Department of Atmospheric Chemistry and Climate; España Fil: Fernandez, Rafael Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Universidad Tecnológica Nacional. Facultad Regional Mendoza; Argentina Fil: Tilmes, Simone. National Center for Atmospheric Research; Estados Unidos Fil: Emmons, Louisa K.. National Center for Atmospheric Research; Estados Unidos Fil: Lamarque, Jean-François. National Center for Atmospheric Research; Estados Unidos |
description |
Halogenated very short lived substances (VSLS) affect the ozone budget in the atmosphere. Brominated VSLS are naturally emitted from the ocean, and current oceanic emission inventories vary dramatically. We present a new global oceanic emission inventory of Br‐VSLS (bromoform and dibromomethane), considering the physical forcing in the ocean and the atmosphere, as well as the ocean<br />biogeochemistry control. A data‐oriented machine‐learning emulator was developed to couple the air‐sea exchange with the ocean biogeochemistry. The predicted surface seawater concentrations and the surface atmospheric mixing ratios of Br‐VSLS are evaluated with long‐term, global‐scale observations; and the predicted vertical distributions of Br‐VSLS are compared to the global airborne observations in both boreal summer and winter. The global marine emissions of bromoform and dibromomethane are estimated to be 385 and 54 Gg Br per year, respectively. The new oceanic emission inventory of Br‐VSLS is more skillful than the widely used top‐down approaches for representing the seasonal/spatial variations and the<br />annual means of atmospheric concentrations. The new approach improves the model predictability for the coupled Earth system model and can be used as a basis for investigating the past and future ocean emissions and feedbacks under climate change. This model framework can be used to calculate the bidirectional oceanic fluxes for other compounds of interest. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-11 info:eu-repo/date/embargoEnd/2020-07-31 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/110384 Wang, Siyuan; Kinnison, Douglas E.; Montzka, Stephen A.; Apel, Eric C.; Hornbrook, Rebecca S.; et al.; Ocean biogeochemistry control on the marine emissions of brominated very short‐lived ozone‐depleting substances: A machine‐learning approach; American Geophysical Union (AGU); Journal of Geophysical Research: Atmospheres; 124; 12; 11-2019; 319-339 2169-8996 2169-897X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/110384 |
identifier_str_mv |
Wang, Siyuan; Kinnison, Douglas E.; Montzka, Stephen A.; Apel, Eric C.; Hornbrook, Rebecca S.; et al.; Ocean biogeochemistry control on the marine emissions of brominated very short‐lived ozone‐depleting substances: A machine‐learning approach; American Geophysical Union (AGU); Journal of Geophysical Research: Atmospheres; 124; 12; 11-2019; 319-339 2169-8996 2169-897X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1029/2019JD031288 info:eu-repo/semantics/altIdentifier/doi/10.1029/2019JD031288 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/embargoedAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
embargoedAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Geophysical Union (AGU) |
publisher.none.fl_str_mv |
American Geophysical Union (AGU) |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980032844136448 |
score |
12.993085 |