Ocean biogeochemistry control on the marine emissions of brominated very short‐lived ozone‐depleting substances: A machine‐learning approach

Autores
Wang, Siyuan; Kinnison, Douglas E.; Montzka, Stephen A.; Apel, Eric C.; Hornbrook, Rebecca S.; Hills, Alan J.; Blake, Donald R.; Barletta, Barbara; Meinardi, Simone; Sweeney, Colm; Moore, Fred; Long, Matthew; Saiz-lopez, Alfonso; Fernandez, Rafael Pedro; Tilmes, Simone; Emmons, Louisa K.; Lamarque, Jean-François
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Halogenated very short lived substances (VSLS) affect the ozone budget in the atmosphere. Brominated VSLS are naturally emitted from the ocean, and current oceanic emission inventories vary dramatically. We present a new global oceanic emission inventory of Br‐VSLS (bromoform and dibromomethane), considering the physical forcing in the ocean and the atmosphere, as well as the ocean
biogeochemistry control. A data‐oriented machine‐learning emulator was developed to couple the air‐sea exchange with the ocean biogeochemistry. The predicted surface seawater concentrations and the surface atmospheric mixing ratios of Br‐VSLS are evaluated with long‐term, global‐scale observations; and the predicted vertical distributions of Br‐VSLS are compared to the global airborne observations in both boreal summer and winter. The global marine emissions of bromoform and dibromomethane are estimated to be 385 and 54 Gg Br per year, respectively. The new oceanic emission inventory of Br‐VSLS is more skillful than the widely used top‐down approaches for representing the seasonal/spatial variations and the
annual means of atmospheric concentrations. The new approach  improves the model predictability for the coupled Earth system model and can be used as a basis for investigating the past and future ocean emissions and feedbacks under climate change. This model framework can be used to calculate the bidirectional oceanic fluxes for other compounds of interest.
Fil: Wang, Siyuan. National Center for Atmospheric Research; Estados Unidos
Fil: Kinnison, Douglas E.. National Center for Atmospheric Research; Estados Unidos
Fil: Montzka, Stephen A.. National Oceanic & Atmospheric Administration; Estados Unidos
Fil: Apel, Eric C.. University of California. Department of Chemistry; Estados Unidos
Fil: Hornbrook, Rebecca S.. National Center for Atmospheric Research; Estados Unidos
Fil: Hills, Alan J.. National Center for Atmospheric Research; Estados Unidos
Fil: Blake, Donald R.. University of California at Irvine; Estados Unidos
Fil: Barletta, Barbara. University of California at Irvine; Estados Unidos
Fil: Meinardi, Simone. University of California at Irvine; Estados Unidos
Fil: Sweeney, Colm. National Oceanic & Atmospheric Administration; Estados Unidos
Fil: Moore, Fred. National Oceanic & Atmospheric Administration; Estados Unidos
Fil: Long, Matthew. National Center for Atmospheric Research; Estados Unidos
Fil: Saiz-lopez, Alfonso. Instituteof Physical Chemistry Rocasolano. Department of Atmospheric Chemistry and Climate; España
Fil: Fernandez, Rafael Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Universidad Tecnológica Nacional. Facultad Regional Mendoza; Argentina
Fil: Tilmes, Simone. National Center for Atmospheric Research; Estados Unidos
Fil: Emmons, Louisa K.. National Center for Atmospheric Research; Estados Unidos
Fil: Lamarque, Jean-François. National Center for Atmospheric Research; Estados Unidos
Materia
MACHINE LEARNING APPROACH
HALÓGENOS VSL
CAM-CHEM
EMISIONES OCEÁNICAS
Nivel de accesibilidad
acceso embargado
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/110384

id CONICETDig_5f6ee0981ac81624cdef93fe2a2f262f
oai_identifier_str oai:ri.conicet.gov.ar:11336/110384
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Ocean biogeochemistry control on the marine emissions of brominated very short‐lived ozone‐depleting substances: A machine‐learning approachWang, SiyuanKinnison, Douglas E.Montzka, Stephen A.Apel, Eric C.Hornbrook, Rebecca S.Hills, Alan J.Blake, Donald R.Barletta, BarbaraMeinardi, SimoneSweeney, ColmMoore, FredLong, MatthewSaiz-lopez, AlfonsoFernandez, Rafael PedroTilmes, SimoneEmmons, Louisa K.Lamarque, Jean-FrançoisMACHINE LEARNING APPROACHHALÓGENOS VSLCAM-CHEMEMISIONES OCEÁNICAShttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Halogenated very short lived substances (VSLS) affect the ozone budget in the atmosphere. Brominated VSLS are naturally emitted from the ocean, and current oceanic emission inventories vary dramatically. We present a new global oceanic emission inventory of Br‐VSLS (bromoform and dibromomethane), considering the physical forcing in the ocean and the atmosphere, as well as the ocean<br />biogeochemistry control. A data‐oriented machine‐learning emulator was developed to couple the air‐sea exchange with the ocean biogeochemistry. The predicted surface seawater concentrations and the surface atmospheric mixing ratios of Br‐VSLS are evaluated with long‐term, global‐scale observations; and the predicted vertical distributions of Br‐VSLS are compared to the global airborne observations in both boreal summer and winter. The global marine emissions of bromoform and dibromomethane are estimated to be 385 and 54 Gg Br per year, respectively. The new oceanic emission inventory of Br‐VSLS is more skillful than the widely used top‐down approaches for representing the seasonal/spatial variations and the<br />annual means of atmospheric concentrations. The new approach  improves the model predictability for the coupled Earth system model and can be used as a basis for investigating the past and future ocean emissions and feedbacks under climate change. This model framework can be used to calculate the bidirectional oceanic fluxes for other compounds of interest.Fil: Wang, Siyuan. National Center for Atmospheric Research; Estados UnidosFil: Kinnison, Douglas E.. National Center for Atmospheric Research; Estados UnidosFil: Montzka, Stephen A.. National Oceanic & Atmospheric Administration; Estados UnidosFil: Apel, Eric C.. University of California. Department of Chemistry; Estados UnidosFil: Hornbrook, Rebecca S.. National Center for Atmospheric Research; Estados UnidosFil: Hills, Alan J.. National Center for Atmospheric Research; Estados UnidosFil: Blake, Donald R.. University of California at Irvine; Estados UnidosFil: Barletta, Barbara. University of California at Irvine; Estados UnidosFil: Meinardi, Simone. University of California at Irvine; Estados UnidosFil: Sweeney, Colm. National Oceanic & Atmospheric Administration; Estados UnidosFil: Moore, Fred. National Oceanic & Atmospheric Administration; Estados UnidosFil: Long, Matthew. National Center for Atmospheric Research; Estados UnidosFil: Saiz-lopez, Alfonso. Instituteof Physical Chemistry Rocasolano. Department of Atmospheric Chemistry and Climate; EspañaFil: Fernandez, Rafael Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Universidad Tecnológica Nacional. Facultad Regional Mendoza; ArgentinaFil: Tilmes, Simone. National Center for Atmospheric Research; Estados UnidosFil: Emmons, Louisa K.. National Center for Atmospheric Research; Estados UnidosFil: Lamarque, Jean-François. National Center for Atmospheric Research; Estados UnidosAmerican Geophysical Union (AGU)2019-11info:eu-repo/date/embargoEnd/2020-07-31info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/110384Wang, Siyuan; Kinnison, Douglas E.; Montzka, Stephen A.; Apel, Eric C.; Hornbrook, Rebecca S.; et al.; Ocean biogeochemistry control on the marine emissions of brominated very short‐lived ozone‐depleting substances: A machine‐learning approach; American Geophysical Union (AGU); Journal of Geophysical Research: Atmospheres; 124; 12; 11-2019; 319-3392169-89962169-897XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1029/2019JD031288info:eu-repo/semantics/altIdentifier/doi/10.1029/2019JD031288info:eu-repo/semantics/embargoedAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:02:40Zoai:ri.conicet.gov.ar:11336/110384instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:02:40.864CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Ocean biogeochemistry control on the marine emissions of brominated very short‐lived ozone‐depleting substances: A machine‐learning approach
title Ocean biogeochemistry control on the marine emissions of brominated very short‐lived ozone‐depleting substances: A machine‐learning approach
spellingShingle Ocean biogeochemistry control on the marine emissions of brominated very short‐lived ozone‐depleting substances: A machine‐learning approach
Wang, Siyuan
MACHINE LEARNING APPROACH
HALÓGENOS VSL
CAM-CHEM
EMISIONES OCEÁNICAS
title_short Ocean biogeochemistry control on the marine emissions of brominated very short‐lived ozone‐depleting substances: A machine‐learning approach
title_full Ocean biogeochemistry control on the marine emissions of brominated very short‐lived ozone‐depleting substances: A machine‐learning approach
title_fullStr Ocean biogeochemistry control on the marine emissions of brominated very short‐lived ozone‐depleting substances: A machine‐learning approach
title_full_unstemmed Ocean biogeochemistry control on the marine emissions of brominated very short‐lived ozone‐depleting substances: A machine‐learning approach
title_sort Ocean biogeochemistry control on the marine emissions of brominated very short‐lived ozone‐depleting substances: A machine‐learning approach
dc.creator.none.fl_str_mv Wang, Siyuan
Kinnison, Douglas E.
Montzka, Stephen A.
Apel, Eric C.
Hornbrook, Rebecca S.
Hills, Alan J.
Blake, Donald R.
Barletta, Barbara
Meinardi, Simone
Sweeney, Colm
Moore, Fred
Long, Matthew
Saiz-lopez, Alfonso
Fernandez, Rafael Pedro
Tilmes, Simone
Emmons, Louisa K.
Lamarque, Jean-François
author Wang, Siyuan
author_facet Wang, Siyuan
Kinnison, Douglas E.
Montzka, Stephen A.
Apel, Eric C.
Hornbrook, Rebecca S.
Hills, Alan J.
Blake, Donald R.
Barletta, Barbara
Meinardi, Simone
Sweeney, Colm
Moore, Fred
Long, Matthew
Saiz-lopez, Alfonso
Fernandez, Rafael Pedro
Tilmes, Simone
Emmons, Louisa K.
Lamarque, Jean-François
author_role author
author2 Kinnison, Douglas E.
Montzka, Stephen A.
Apel, Eric C.
Hornbrook, Rebecca S.
Hills, Alan J.
Blake, Donald R.
Barletta, Barbara
Meinardi, Simone
Sweeney, Colm
Moore, Fred
Long, Matthew
Saiz-lopez, Alfonso
Fernandez, Rafael Pedro
Tilmes, Simone
Emmons, Louisa K.
Lamarque, Jean-François
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv MACHINE LEARNING APPROACH
HALÓGENOS VSL
CAM-CHEM
EMISIONES OCEÁNICAS
topic MACHINE LEARNING APPROACH
HALÓGENOS VSL
CAM-CHEM
EMISIONES OCEÁNICAS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Halogenated very short lived substances (VSLS) affect the ozone budget in the atmosphere. Brominated VSLS are naturally emitted from the ocean, and current oceanic emission inventories vary dramatically. We present a new global oceanic emission inventory of Br‐VSLS (bromoform and dibromomethane), considering the physical forcing in the ocean and the atmosphere, as well as the ocean<br />biogeochemistry control. A data‐oriented machine‐learning emulator was developed to couple the air‐sea exchange with the ocean biogeochemistry. The predicted surface seawater concentrations and the surface atmospheric mixing ratios of Br‐VSLS are evaluated with long‐term, global‐scale observations; and the predicted vertical distributions of Br‐VSLS are compared to the global airborne observations in both boreal summer and winter. The global marine emissions of bromoform and dibromomethane are estimated to be 385 and 54 Gg Br per year, respectively. The new oceanic emission inventory of Br‐VSLS is more skillful than the widely used top‐down approaches for representing the seasonal/spatial variations and the<br />annual means of atmospheric concentrations. The new approach  improves the model predictability for the coupled Earth system model and can be used as a basis for investigating the past and future ocean emissions and feedbacks under climate change. This model framework can be used to calculate the bidirectional oceanic fluxes for other compounds of interest.
Fil: Wang, Siyuan. National Center for Atmospheric Research; Estados Unidos
Fil: Kinnison, Douglas E.. National Center for Atmospheric Research; Estados Unidos
Fil: Montzka, Stephen A.. National Oceanic & Atmospheric Administration; Estados Unidos
Fil: Apel, Eric C.. University of California. Department of Chemistry; Estados Unidos
Fil: Hornbrook, Rebecca S.. National Center for Atmospheric Research; Estados Unidos
Fil: Hills, Alan J.. National Center for Atmospheric Research; Estados Unidos
Fil: Blake, Donald R.. University of California at Irvine; Estados Unidos
Fil: Barletta, Barbara. University of California at Irvine; Estados Unidos
Fil: Meinardi, Simone. University of California at Irvine; Estados Unidos
Fil: Sweeney, Colm. National Oceanic & Atmospheric Administration; Estados Unidos
Fil: Moore, Fred. National Oceanic & Atmospheric Administration; Estados Unidos
Fil: Long, Matthew. National Center for Atmospheric Research; Estados Unidos
Fil: Saiz-lopez, Alfonso. Instituteof Physical Chemistry Rocasolano. Department of Atmospheric Chemistry and Climate; España
Fil: Fernandez, Rafael Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Universidad Tecnológica Nacional. Facultad Regional Mendoza; Argentina
Fil: Tilmes, Simone. National Center for Atmospheric Research; Estados Unidos
Fil: Emmons, Louisa K.. National Center for Atmospheric Research; Estados Unidos
Fil: Lamarque, Jean-François. National Center for Atmospheric Research; Estados Unidos
description Halogenated very short lived substances (VSLS) affect the ozone budget in the atmosphere. Brominated VSLS are naturally emitted from the ocean, and current oceanic emission inventories vary dramatically. We present a new global oceanic emission inventory of Br‐VSLS (bromoform and dibromomethane), considering the physical forcing in the ocean and the atmosphere, as well as the ocean<br />biogeochemistry control. A data‐oriented machine‐learning emulator was developed to couple the air‐sea exchange with the ocean biogeochemistry. The predicted surface seawater concentrations and the surface atmospheric mixing ratios of Br‐VSLS are evaluated with long‐term, global‐scale observations; and the predicted vertical distributions of Br‐VSLS are compared to the global airborne observations in both boreal summer and winter. The global marine emissions of bromoform and dibromomethane are estimated to be 385 and 54 Gg Br per year, respectively. The new oceanic emission inventory of Br‐VSLS is more skillful than the widely used top‐down approaches for representing the seasonal/spatial variations and the<br />annual means of atmospheric concentrations. The new approach  improves the model predictability for the coupled Earth system model and can be used as a basis for investigating the past and future ocean emissions and feedbacks under climate change. This model framework can be used to calculate the bidirectional oceanic fluxes for other compounds of interest.
publishDate 2019
dc.date.none.fl_str_mv 2019-11
info:eu-repo/date/embargoEnd/2020-07-31
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/110384
Wang, Siyuan; Kinnison, Douglas E.; Montzka, Stephen A.; Apel, Eric C.; Hornbrook, Rebecca S.; et al.; Ocean biogeochemistry control on the marine emissions of brominated very short‐lived ozone‐depleting substances: A machine‐learning approach; American Geophysical Union (AGU); Journal of Geophysical Research: Atmospheres; 124; 12; 11-2019; 319-339
2169-8996
2169-897X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/110384
identifier_str_mv Wang, Siyuan; Kinnison, Douglas E.; Montzka, Stephen A.; Apel, Eric C.; Hornbrook, Rebecca S.; et al.; Ocean biogeochemistry control on the marine emissions of brominated very short‐lived ozone‐depleting substances: A machine‐learning approach; American Geophysical Union (AGU); Journal of Geophysical Research: Atmospheres; 124; 12; 11-2019; 319-339
2169-8996
2169-897X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1029/2019JD031288
info:eu-repo/semantics/altIdentifier/doi/10.1029/2019JD031288
dc.rights.none.fl_str_mv info:eu-repo/semantics/embargoedAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv embargoedAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Geophysical Union (AGU)
publisher.none.fl_str_mv American Geophysical Union (AGU)
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842980032844136448
score 12.993085