An online air-sea exchange model framework for trace gases powered by machine- learning
- Autores
- Wang, Siyuan; Emmons, Louisa K.; Tilmes, Simone; Kinnison, Douglas E.; Long, Mateo C.; Lamarque, Jean Francoise; Apel, Eric C.; Hornbrook, Rebecca S.; Montzka, Stephen; Saiz López, Alfonso; Fernandez, Rafael Pedro
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- The ocean emits a wide range of trace gases, such as volatile organic compounds, or sulfur-,nitrogen-, and halogen-containing compounds. Many of these gases play critical roles in the atmosphere, including aerosol and cloud formation, tropospheric and stratospheric ozone budget, as well as the self-cleaning capacity of the atmosphere. Most chemistry-climate models use prescribed oceanic emissions (often derived from observations). These prescribed (offline) emissions generally do not respond to changes in local conditions. A process-level representation of the bi-directional oceanic emissions of trace gases remains challenging, mainly because the ocean biogeochemical
processes controlling the natural synthesis of these compounds in the seawater remain poorly understood. We present a new online air-sea exchange framework for the NCAR CESM2, with an observationally trained machine-learning emulator to couple the ocean biogeochemistry with the air-sea exchange. This machine-learning based approach so far has been tested for a number of important trace gases, including dimethyl sulfide (DMS), acetone, bromoform (CHBr 3 ), and dibromomethane (CH 2 Br 2 ), and the preliminary results are evaluated with observations around the globe. This new model framework is more skillful than the widely used top-down approaches for representing the seasonal/spatial variations and the annual means of atmospheric concentrations. The new approach improves the model predictability for the coupled earth system model, and can be used as a basis for investigating the future ocean emissions and feedbacks under climate change.
Fil: Wang, Siyuan. National Center for Atmospheric Research; Estados Unidos
Fil: Emmons, Louisa K.. National Center for Atmospheric Research; Estados Unidos
Fil: Tilmes, Simone. National Center for Atmospheric Research; Estados Unidos
Fil: Kinnison, Douglas E.. National Center for Atmospheric Research; Estados Unidos
Fil: Long, Mateo C.. National Center for Atmospheric Research; Estados Unidos
Fil: Lamarque, Jean Francoise. National Center for Atmospheric Research; Estados Unidos
Fil: Apel, Eric C.. National Oceanic & Atmospheric Administration, Esrl; Estados Unidos
Fil: Hornbrook, Rebecca S.. Centro Nacional de Investigación Atmosférica; Estados Unidos
Fil: Montzka, Stephen. National Ocean And Atmospheric Administration; Estados Unidos
Fil: Saiz López, Alfonso. Consejo Superior de Investigaciones Científicas; España
Fil: Fernandez, Rafael Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Tecnológica Nacional. Facultad Regional de Mendoza; Argentina
American Geophysical Union Fall Meeting
San Francisco
Estados Unidos
American Geophysical Union - Materia
-
SEA-AIR EXCHANGE
VSL HALOGENS
CAM-CHEM
MACHINE LEARNING - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/215122
Ver los metadatos del registro completo
id |
CONICETDig_ed9ec1805d4b597481e559ea6e1cb7fa |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/215122 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
An online air-sea exchange model framework for trace gases powered by machine- learningWang, SiyuanEmmons, Louisa K.Tilmes, SimoneKinnison, Douglas E.Long, Mateo C.Lamarque, Jean FrancoiseApel, Eric C.Hornbrook, Rebecca S.Montzka, StephenSaiz López, AlfonsoFernandez, Rafael PedroSEA-AIR EXCHANGEVSL HALOGENSCAM-CHEMMACHINE LEARNINGhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1The ocean emits a wide range of trace gases, such as volatile organic compounds, or sulfur-,nitrogen-, and halogen-containing compounds. Many of these gases play critical roles in the atmosphere, including aerosol and cloud formation, tropospheric and stratospheric ozone budget, as well as the self-cleaning capacity of the atmosphere. Most chemistry-climate models use prescribed oceanic emissions (often derived from observations). These prescribed (offline) emissions generally do not respond to changes in local conditions. A process-level representation of the bi-directional oceanic emissions of trace gases remains challenging, mainly because the ocean biogeochemical<br />processes controlling the natural synthesis of these compounds in the seawater remain poorly understood. We present a new online air-sea exchange framework for the NCAR CESM2, with an observationally trained machine-learning emulator to couple the ocean biogeochemistry with the air-sea exchange. This machine-learning based approach so far has been tested for a number of important trace gases, including dimethyl sulfide (DMS), acetone, bromoform (CHBr 3 ), and dibromomethane (CH 2 Br 2 ), and the preliminary results are evaluated with observations around the globe. This new model framework is more skillful than the widely used top-down approaches for representing the seasonal/spatial variations and the annual means of atmospheric concentrations. The new approach improves the model predictability for the coupled earth system model, and can be used as a basis for investigating the future ocean emissions and feedbacks under climate change.Fil: Wang, Siyuan. National Center for Atmospheric Research; Estados UnidosFil: Emmons, Louisa K.. National Center for Atmospheric Research; Estados UnidosFil: Tilmes, Simone. National Center for Atmospheric Research; Estados UnidosFil: Kinnison, Douglas E.. National Center for Atmospheric Research; Estados UnidosFil: Long, Mateo C.. National Center for Atmospheric Research; Estados UnidosFil: Lamarque, Jean Francoise. National Center for Atmospheric Research; Estados UnidosFil: Apel, Eric C.. National Oceanic & Atmospheric Administration, Esrl; Estados UnidosFil: Hornbrook, Rebecca S.. Centro Nacional de Investigación Atmosférica; Estados UnidosFil: Montzka, Stephen. National Ocean And Atmospheric Administration; Estados UnidosFil: Saiz López, Alfonso. Consejo Superior de Investigaciones Científicas; EspañaFil: Fernandez, Rafael Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Tecnológica Nacional. Facultad Regional de Mendoza; ArgentinaAmerican Geophysical Union Fall MeetingSan FranciscoEstados UnidosAmerican Geophysical UnionAmerican Geophysical Union2019info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectReuniónBookhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/215122An online air-sea exchange model framework for trace gases powered by machine- learning; American Geophysical Union Fall Meeting; San Francisco; Estados Unidos; 2019; 1-1CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://agu.confex.com/agu/fm19/meetingapp.cgi/Paper/510957Internacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:18:33Zoai:ri.conicet.gov.ar:11336/215122instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:18:33.84CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
An online air-sea exchange model framework for trace gases powered by machine- learning |
title |
An online air-sea exchange model framework for trace gases powered by machine- learning |
spellingShingle |
An online air-sea exchange model framework for trace gases powered by machine- learning Wang, Siyuan SEA-AIR EXCHANGE VSL HALOGENS CAM-CHEM MACHINE LEARNING |
title_short |
An online air-sea exchange model framework for trace gases powered by machine- learning |
title_full |
An online air-sea exchange model framework for trace gases powered by machine- learning |
title_fullStr |
An online air-sea exchange model framework for trace gases powered by machine- learning |
title_full_unstemmed |
An online air-sea exchange model framework for trace gases powered by machine- learning |
title_sort |
An online air-sea exchange model framework for trace gases powered by machine- learning |
dc.creator.none.fl_str_mv |
Wang, Siyuan Emmons, Louisa K. Tilmes, Simone Kinnison, Douglas E. Long, Mateo C. Lamarque, Jean Francoise Apel, Eric C. Hornbrook, Rebecca S. Montzka, Stephen Saiz López, Alfonso Fernandez, Rafael Pedro |
author |
Wang, Siyuan |
author_facet |
Wang, Siyuan Emmons, Louisa K. Tilmes, Simone Kinnison, Douglas E. Long, Mateo C. Lamarque, Jean Francoise Apel, Eric C. Hornbrook, Rebecca S. Montzka, Stephen Saiz López, Alfonso Fernandez, Rafael Pedro |
author_role |
author |
author2 |
Emmons, Louisa K. Tilmes, Simone Kinnison, Douglas E. Long, Mateo C. Lamarque, Jean Francoise Apel, Eric C. Hornbrook, Rebecca S. Montzka, Stephen Saiz López, Alfonso Fernandez, Rafael Pedro |
author2_role |
author author author author author author author author author author |
dc.subject.none.fl_str_mv |
SEA-AIR EXCHANGE VSL HALOGENS CAM-CHEM MACHINE LEARNING |
topic |
SEA-AIR EXCHANGE VSL HALOGENS CAM-CHEM MACHINE LEARNING |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The ocean emits a wide range of trace gases, such as volatile organic compounds, or sulfur-,nitrogen-, and halogen-containing compounds. Many of these gases play critical roles in the atmosphere, including aerosol and cloud formation, tropospheric and stratospheric ozone budget, as well as the self-cleaning capacity of the atmosphere. Most chemistry-climate models use prescribed oceanic emissions (often derived from observations). These prescribed (offline) emissions generally do not respond to changes in local conditions. A process-level representation of the bi-directional oceanic emissions of trace gases remains challenging, mainly because the ocean biogeochemical<br />processes controlling the natural synthesis of these compounds in the seawater remain poorly understood. We present a new online air-sea exchange framework for the NCAR CESM2, with an observationally trained machine-learning emulator to couple the ocean biogeochemistry with the air-sea exchange. This machine-learning based approach so far has been tested for a number of important trace gases, including dimethyl sulfide (DMS), acetone, bromoform (CHBr 3 ), and dibromomethane (CH 2 Br 2 ), and the preliminary results are evaluated with observations around the globe. This new model framework is more skillful than the widely used top-down approaches for representing the seasonal/spatial variations and the annual means of atmospheric concentrations. The new approach improves the model predictability for the coupled earth system model, and can be used as a basis for investigating the future ocean emissions and feedbacks under climate change. Fil: Wang, Siyuan. National Center for Atmospheric Research; Estados Unidos Fil: Emmons, Louisa K.. National Center for Atmospheric Research; Estados Unidos Fil: Tilmes, Simone. National Center for Atmospheric Research; Estados Unidos Fil: Kinnison, Douglas E.. National Center for Atmospheric Research; Estados Unidos Fil: Long, Mateo C.. National Center for Atmospheric Research; Estados Unidos Fil: Lamarque, Jean Francoise. National Center for Atmospheric Research; Estados Unidos Fil: Apel, Eric C.. National Oceanic & Atmospheric Administration, Esrl; Estados Unidos Fil: Hornbrook, Rebecca S.. Centro Nacional de Investigación Atmosférica; Estados Unidos Fil: Montzka, Stephen. National Ocean And Atmospheric Administration; Estados Unidos Fil: Saiz López, Alfonso. Consejo Superior de Investigaciones Científicas; España Fil: Fernandez, Rafael Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Tecnológica Nacional. Facultad Regional de Mendoza; Argentina American Geophysical Union Fall Meeting San Francisco Estados Unidos American Geophysical Union |
description |
The ocean emits a wide range of trace gases, such as volatile organic compounds, or sulfur-,nitrogen-, and halogen-containing compounds. Many of these gases play critical roles in the atmosphere, including aerosol and cloud formation, tropospheric and stratospheric ozone budget, as well as the self-cleaning capacity of the atmosphere. Most chemistry-climate models use prescribed oceanic emissions (often derived from observations). These prescribed (offline) emissions generally do not respond to changes in local conditions. A process-level representation of the bi-directional oceanic emissions of trace gases remains challenging, mainly because the ocean biogeochemical<br />processes controlling the natural synthesis of these compounds in the seawater remain poorly understood. We present a new online air-sea exchange framework for the NCAR CESM2, with an observationally trained machine-learning emulator to couple the ocean biogeochemistry with the air-sea exchange. This machine-learning based approach so far has been tested for a number of important trace gases, including dimethyl sulfide (DMS), acetone, bromoform (CHBr 3 ), and dibromomethane (CH 2 Br 2 ), and the preliminary results are evaluated with observations around the globe. This new model framework is more skillful than the widely used top-down approaches for representing the seasonal/spatial variations and the annual means of atmospheric concentrations. The new approach improves the model predictability for the coupled earth system model, and can be used as a basis for investigating the future ocean emissions and feedbacks under climate change. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/conferenceObject Reunión Book http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
status_str |
publishedVersion |
format |
conferenceObject |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/215122 An online air-sea exchange model framework for trace gases powered by machine- learning; American Geophysical Union Fall Meeting; San Francisco; Estados Unidos; 2019; 1-1 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/215122 |
identifier_str_mv |
An online air-sea exchange model framework for trace gases powered by machine- learning; American Geophysical Union Fall Meeting; San Francisco; Estados Unidos; 2019; 1-1 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://agu.confex.com/agu/fm19/meetingapp.cgi/Paper/510957 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.coverage.none.fl_str_mv |
Internacional |
dc.publisher.none.fl_str_mv |
American Geophysical Union |
publisher.none.fl_str_mv |
American Geophysical Union |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842981015271768064 |
score |
12.993085 |