Use of fibrolytic enzymes additives to enhance in vitro ruminal fermentation of corn silage

Autores
Phakachoed, N.; Suksombat, W.; Colombatto, Dario; Beauchemin, K. A.
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Two experiments were conducted to evaluate the effect of four enzyme additives on ruminal fermentation of corn silage using a 48 h batch culture in vitro assay with buffer and ruminal fluid. Experiment 1 (Exp. 1) and Experiment 2 (Exp. 2) were conducted as completely randomized designs each with two runs and four replicates. The enzyme additives (E1, E2, E3, and E4) were commercial products that provided a range in endoglucanase, exoglucanase, and xylanase activities. For both xylanase (birch wood and oat spelt substrate) and endoglucanase (carboxymethylcellulose substrate), the enzyme products (per ml) were ranked E4>E1>E2>E3. In Exp. 1, the four enzymes were added at 0, 2, 4, and 8 μl/g of corn silage dry matter (DM), whereas in Exp. 2 enzymes were added at 0, 0.5, 1, 2, and 4 μl/g DM. Gas production (GP) was measured at 3, 6, 12, 18, 24, and 48 h after incubation. Disappearance of DM (DMD), neutral detergent fiber (NDFD), and acid detergent fiber (ADFD), and volatile fatty acid concentrations (VFA; total and individual molar proportions) were determined after 24 and 48 h. In Exp. 1, E1 and E2 had higher NDFD and ADFD at 24 and 48 h of incubation (P<0.001) compared with E3 and E4. Increasing dose rate increased NDFD and ADFD for all enzymes (except ADFD for E4 at 48 h), with the optimum dose rate dependant on the enzyme additive (dose×enzyme; P<0.01). There were some treatment effects on DMD and total GP at 24 and 48 h, but these responses were not consistent with responses in NDFD and ADFD. Experiment 2 was conducted to confirm the effects and optimum dose rate of each enzyme additive. In Exp. 2, DMD was not affected by enzyme after 24 and 48 h incubation. There were no enzyme×dose interactions for DMD, NDFD, or ADFD after 24 or 48 h of incubation (except for ADFD at 48 h). After 24 h, DMD, NDFD, and ADFD increased linearly with increasing dose (P<0.05); after 48 h DMD increased linearly, whereas NDFD increased quadratically with increasing enzyme dose (P<0.05). The ADFD increased linearly after 48 h for E3 and E4, but after 48 h ADFD increased quadratically for E1 and E2. Total GP was consistently lowest for E4 at both incubation times (P<0.05). There were no enzyme×dose interactions (P>0.05) for any of the fermentation variables at either 24 or 48 h of incubation in Exp. 2. There were differences amongst the additives for total VFA at 24 and 48 h (P≤0.05); increasing enzyme dose decreased total VFA after 24 h but increased total VFA at 48 h, such that all doses were higher than the control (P<0.001). Overall, the enzyme additives increased NDFD and ADFD of corn silage in vitro; however, E1 and E2 were more effective than E3 or E4. Responses to increasing dose of enzyme were generally linear or curvilinear, and the optimum dose rate differed amongst the products evaluated. Evaluation of the enzymes at 24 and 48 h generally led to the same ranking of the additives, and the degradation of NDF and ADF was more useful in differentiating the enzymes compared with DM and total GP.
Fil: Phakachoed, N.. Suranaree University of Technology; Tailandia
Fil: Suksombat, W.. Suranaree University of Technology; Tailandia
Fil: Colombatto, Dario. Universidad de Buenos Aires. Facultad de Agronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Beauchemin, K. A.. Agriculture and Agri-Food Canada; Canadá
Materia
Exogenous Fibrolytic Enzyme
Corn Silage
Disappearance
In Vitro Batch Culture
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/26173

id CONICETDig_5ea53a0cb9d1728e83dd29438c7f8a5b
oai_identifier_str oai:ri.conicet.gov.ar:11336/26173
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Use of fibrolytic enzymes additives to enhance in vitro ruminal fermentation of corn silagePhakachoed, N.Suksombat, W.Colombatto, DarioBeauchemin, K. A.Exogenous Fibrolytic EnzymeCorn SilageDisappearanceIn Vitro Batch Culturehttps://purl.org/becyt/ford/4.2https://purl.org/becyt/ford/4Two experiments were conducted to evaluate the effect of four enzyme additives on ruminal fermentation of corn silage using a 48 h batch culture in vitro assay with buffer and ruminal fluid. Experiment 1 (Exp. 1) and Experiment 2 (Exp. 2) were conducted as completely randomized designs each with two runs and four replicates. The enzyme additives (E1, E2, E3, and E4) were commercial products that provided a range in endoglucanase, exoglucanase, and xylanase activities. For both xylanase (birch wood and oat spelt substrate) and endoglucanase (carboxymethylcellulose substrate), the enzyme products (per ml) were ranked E4>E1>E2>E3. In Exp. 1, the four enzymes were added at 0, 2, 4, and 8 μl/g of corn silage dry matter (DM), whereas in Exp. 2 enzymes were added at 0, 0.5, 1, 2, and 4 μl/g DM. Gas production (GP) was measured at 3, 6, 12, 18, 24, and 48 h after incubation. Disappearance of DM (DMD), neutral detergent fiber (NDFD), and acid detergent fiber (ADFD), and volatile fatty acid concentrations (VFA; total and individual molar proportions) were determined after 24 and 48 h. In Exp. 1, E1 and E2 had higher NDFD and ADFD at 24 and 48 h of incubation (P<0.001) compared with E3 and E4. Increasing dose rate increased NDFD and ADFD for all enzymes (except ADFD for E4 at 48 h), with the optimum dose rate dependant on the enzyme additive (dose×enzyme; P<0.01). There were some treatment effects on DMD and total GP at 24 and 48 h, but these responses were not consistent with responses in NDFD and ADFD. Experiment 2 was conducted to confirm the effects and optimum dose rate of each enzyme additive. In Exp. 2, DMD was not affected by enzyme after 24 and 48 h incubation. There were no enzyme×dose interactions for DMD, NDFD, or ADFD after 24 or 48 h of incubation (except for ADFD at 48 h). After 24 h, DMD, NDFD, and ADFD increased linearly with increasing dose (P<0.05); after 48 h DMD increased linearly, whereas NDFD increased quadratically with increasing enzyme dose (P<0.05). The ADFD increased linearly after 48 h for E3 and E4, but after 48 h ADFD increased quadratically for E1 and E2. Total GP was consistently lowest for E4 at both incubation times (P<0.05). There were no enzyme×dose interactions (P>0.05) for any of the fermentation variables at either 24 or 48 h of incubation in Exp. 2. There were differences amongst the additives for total VFA at 24 and 48 h (P≤0.05); increasing enzyme dose decreased total VFA after 24 h but increased total VFA at 48 h, such that all doses were higher than the control (P<0.001). Overall, the enzyme additives increased NDFD and ADFD of corn silage in vitro; however, E1 and E2 were more effective than E3 or E4. Responses to increasing dose of enzyme were generally linear or curvilinear, and the optimum dose rate differed amongst the products evaluated. Evaluation of the enzymes at 24 and 48 h generally led to the same ranking of the additives, and the degradation of NDF and ADF was more useful in differentiating the enzymes compared with DM and total GP.Fil: Phakachoed, N.. Suranaree University of Technology; TailandiaFil: Suksombat, W.. Suranaree University of Technology; TailandiaFil: Colombatto, Dario. Universidad de Buenos Aires. Facultad de Agronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Beauchemin, K. A.. Agriculture and Agri-Food Canada; CanadáElsevier Science2013-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/26173Phakachoed, N.; Suksombat, W.; Colombatto, Dario; Beauchemin, K. A.; Use of fibrolytic enzymes additives to enhance in vitro ruminal fermentation of corn silage; Elsevier Science; Livestock Science; 157; 1; 7-2013; 100-1121871-1413CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.livsci.2013.06.020info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1871141313002837info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:37:23Zoai:ri.conicet.gov.ar:11336/26173instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:37:23.798CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Use of fibrolytic enzymes additives to enhance in vitro ruminal fermentation of corn silage
title Use of fibrolytic enzymes additives to enhance in vitro ruminal fermentation of corn silage
spellingShingle Use of fibrolytic enzymes additives to enhance in vitro ruminal fermentation of corn silage
Phakachoed, N.
Exogenous Fibrolytic Enzyme
Corn Silage
Disappearance
In Vitro Batch Culture
title_short Use of fibrolytic enzymes additives to enhance in vitro ruminal fermentation of corn silage
title_full Use of fibrolytic enzymes additives to enhance in vitro ruminal fermentation of corn silage
title_fullStr Use of fibrolytic enzymes additives to enhance in vitro ruminal fermentation of corn silage
title_full_unstemmed Use of fibrolytic enzymes additives to enhance in vitro ruminal fermentation of corn silage
title_sort Use of fibrolytic enzymes additives to enhance in vitro ruminal fermentation of corn silage
dc.creator.none.fl_str_mv Phakachoed, N.
Suksombat, W.
Colombatto, Dario
Beauchemin, K. A.
author Phakachoed, N.
author_facet Phakachoed, N.
Suksombat, W.
Colombatto, Dario
Beauchemin, K. A.
author_role author
author2 Suksombat, W.
Colombatto, Dario
Beauchemin, K. A.
author2_role author
author
author
dc.subject.none.fl_str_mv Exogenous Fibrolytic Enzyme
Corn Silage
Disappearance
In Vitro Batch Culture
topic Exogenous Fibrolytic Enzyme
Corn Silage
Disappearance
In Vitro Batch Culture
purl_subject.fl_str_mv https://purl.org/becyt/ford/4.2
https://purl.org/becyt/ford/4
dc.description.none.fl_txt_mv Two experiments were conducted to evaluate the effect of four enzyme additives on ruminal fermentation of corn silage using a 48 h batch culture in vitro assay with buffer and ruminal fluid. Experiment 1 (Exp. 1) and Experiment 2 (Exp. 2) were conducted as completely randomized designs each with two runs and four replicates. The enzyme additives (E1, E2, E3, and E4) were commercial products that provided a range in endoglucanase, exoglucanase, and xylanase activities. For both xylanase (birch wood and oat spelt substrate) and endoglucanase (carboxymethylcellulose substrate), the enzyme products (per ml) were ranked E4>E1>E2>E3. In Exp. 1, the four enzymes were added at 0, 2, 4, and 8 μl/g of corn silage dry matter (DM), whereas in Exp. 2 enzymes were added at 0, 0.5, 1, 2, and 4 μl/g DM. Gas production (GP) was measured at 3, 6, 12, 18, 24, and 48 h after incubation. Disappearance of DM (DMD), neutral detergent fiber (NDFD), and acid detergent fiber (ADFD), and volatile fatty acid concentrations (VFA; total and individual molar proportions) were determined after 24 and 48 h. In Exp. 1, E1 and E2 had higher NDFD and ADFD at 24 and 48 h of incubation (P<0.001) compared with E3 and E4. Increasing dose rate increased NDFD and ADFD for all enzymes (except ADFD for E4 at 48 h), with the optimum dose rate dependant on the enzyme additive (dose×enzyme; P<0.01). There were some treatment effects on DMD and total GP at 24 and 48 h, but these responses were not consistent with responses in NDFD and ADFD. Experiment 2 was conducted to confirm the effects and optimum dose rate of each enzyme additive. In Exp. 2, DMD was not affected by enzyme after 24 and 48 h incubation. There were no enzyme×dose interactions for DMD, NDFD, or ADFD after 24 or 48 h of incubation (except for ADFD at 48 h). After 24 h, DMD, NDFD, and ADFD increased linearly with increasing dose (P<0.05); after 48 h DMD increased linearly, whereas NDFD increased quadratically with increasing enzyme dose (P<0.05). The ADFD increased linearly after 48 h for E3 and E4, but after 48 h ADFD increased quadratically for E1 and E2. Total GP was consistently lowest for E4 at both incubation times (P<0.05). There were no enzyme×dose interactions (P>0.05) for any of the fermentation variables at either 24 or 48 h of incubation in Exp. 2. There were differences amongst the additives for total VFA at 24 and 48 h (P≤0.05); increasing enzyme dose decreased total VFA after 24 h but increased total VFA at 48 h, such that all doses were higher than the control (P<0.001). Overall, the enzyme additives increased NDFD and ADFD of corn silage in vitro; however, E1 and E2 were more effective than E3 or E4. Responses to increasing dose of enzyme were generally linear or curvilinear, and the optimum dose rate differed amongst the products evaluated. Evaluation of the enzymes at 24 and 48 h generally led to the same ranking of the additives, and the degradation of NDF and ADF was more useful in differentiating the enzymes compared with DM and total GP.
Fil: Phakachoed, N.. Suranaree University of Technology; Tailandia
Fil: Suksombat, W.. Suranaree University of Technology; Tailandia
Fil: Colombatto, Dario. Universidad de Buenos Aires. Facultad de Agronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Beauchemin, K. A.. Agriculture and Agri-Food Canada; Canadá
description Two experiments were conducted to evaluate the effect of four enzyme additives on ruminal fermentation of corn silage using a 48 h batch culture in vitro assay with buffer and ruminal fluid. Experiment 1 (Exp. 1) and Experiment 2 (Exp. 2) were conducted as completely randomized designs each with two runs and four replicates. The enzyme additives (E1, E2, E3, and E4) were commercial products that provided a range in endoglucanase, exoglucanase, and xylanase activities. For both xylanase (birch wood and oat spelt substrate) and endoglucanase (carboxymethylcellulose substrate), the enzyme products (per ml) were ranked E4>E1>E2>E3. In Exp. 1, the four enzymes were added at 0, 2, 4, and 8 μl/g of corn silage dry matter (DM), whereas in Exp. 2 enzymes were added at 0, 0.5, 1, 2, and 4 μl/g DM. Gas production (GP) was measured at 3, 6, 12, 18, 24, and 48 h after incubation. Disappearance of DM (DMD), neutral detergent fiber (NDFD), and acid detergent fiber (ADFD), and volatile fatty acid concentrations (VFA; total and individual molar proportions) were determined after 24 and 48 h. In Exp. 1, E1 and E2 had higher NDFD and ADFD at 24 and 48 h of incubation (P<0.001) compared with E3 and E4. Increasing dose rate increased NDFD and ADFD for all enzymes (except ADFD for E4 at 48 h), with the optimum dose rate dependant on the enzyme additive (dose×enzyme; P<0.01). There were some treatment effects on DMD and total GP at 24 and 48 h, but these responses were not consistent with responses in NDFD and ADFD. Experiment 2 was conducted to confirm the effects and optimum dose rate of each enzyme additive. In Exp. 2, DMD was not affected by enzyme after 24 and 48 h incubation. There were no enzyme×dose interactions for DMD, NDFD, or ADFD after 24 or 48 h of incubation (except for ADFD at 48 h). After 24 h, DMD, NDFD, and ADFD increased linearly with increasing dose (P<0.05); after 48 h DMD increased linearly, whereas NDFD increased quadratically with increasing enzyme dose (P<0.05). The ADFD increased linearly after 48 h for E3 and E4, but after 48 h ADFD increased quadratically for E1 and E2. Total GP was consistently lowest for E4 at both incubation times (P<0.05). There were no enzyme×dose interactions (P>0.05) for any of the fermentation variables at either 24 or 48 h of incubation in Exp. 2. There were differences amongst the additives for total VFA at 24 and 48 h (P≤0.05); increasing enzyme dose decreased total VFA after 24 h but increased total VFA at 48 h, such that all doses were higher than the control (P<0.001). Overall, the enzyme additives increased NDFD and ADFD of corn silage in vitro; however, E1 and E2 were more effective than E3 or E4. Responses to increasing dose of enzyme were generally linear or curvilinear, and the optimum dose rate differed amongst the products evaluated. Evaluation of the enzymes at 24 and 48 h generally led to the same ranking of the additives, and the degradation of NDF and ADF was more useful in differentiating the enzymes compared with DM and total GP.
publishDate 2013
dc.date.none.fl_str_mv 2013-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/26173
Phakachoed, N.; Suksombat, W.; Colombatto, Dario; Beauchemin, K. A.; Use of fibrolytic enzymes additives to enhance in vitro ruminal fermentation of corn silage; Elsevier Science; Livestock Science; 157; 1; 7-2013; 100-112
1871-1413
CONICET Digital
CONICET
url http://hdl.handle.net/11336/26173
identifier_str_mv Phakachoed, N.; Suksombat, W.; Colombatto, Dario; Beauchemin, K. A.; Use of fibrolytic enzymes additives to enhance in vitro ruminal fermentation of corn silage; Elsevier Science; Livestock Science; 157; 1; 7-2013; 100-112
1871-1413
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.livsci.2013.06.020
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1871141313002837
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613178062798848
score 13.069144