Genome-wide data (ChIP-seq) enabled identification of cell wall-related and aquaporin genes as targets of tomato ASR1, a drought stress-responsive transcription factor

Autores
Ricardi, Martiniano María; González, Rodrigo Matías; Zhong, Silin; Dominguez, Pia Guadalupe; Duffy, Tomás; Turjanski, Pablo Guillermo; Salgado Salter, Juan David; Alleva, Karina Edith; Carrari, Fernando Oscar; Giovannoni, James J.; Estevez, Jose Manuel; Iusem, Norberto Daniel
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Background: Identifying the target genes of transcription factors is important for unraveling regulatory networks in all types of organisms. Our interest was precisely to uncover the spectrum of loci regulated by a widespread plant transcription factor involved in physiological adaptation to drought, a type of stress that plants have encountered since the colonization of land habitats 400 MYA. The regulator under study, named ASR1, is exclusive to the plant kingdom (albeit absent in Arabidopsis) and known to alleviate the stress caused by restricted water availability. As its target genes are still unknown despite the original cloning of Asr1 cDNA 20 years ago, we examined the tomato genome for specific loci interacting in vivo with this conspicuous protein. Results: We performed ChIP followed by high throughput DNA sequencing (ChIP-seq) on leaves from stressed tomato plants, using a high-quality anti-ASR1 antibody. In this way, we unraveled a novel repertoire of target genes, some of which are clearly involved in the response to drought stress. Many of the ASR1-enriched genomic loci we found encode enzymes involved in cell wall synthesis and remodeling as well as channels implicated in water and solute flux, such as aquaporins. In addition, we were able to determine a robust consensus ASR1-binding DNA motif.Conclusions: The finding of cell wall synthesis and aquaporin genes as targets of ASR1 is consistent with their suggested role in the physiological adaptation of plants to water loss. The results gain insight into the environmental stress-sensing pathways leading to plant tolerance of drought. © 2014 Ricardi et al.; licensee BioMed Central Ltd.
Fil: Ricardi, Martiniano María. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina
Fil: González, Rodrigo Matías. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina
Fil: Zhong, Silin. Boyce Thompson Institute For Plant Research;
Fil: Dominguez, Pia Guadalupe. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; Argentina
Fil: Duffy, Tomás. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; Argentina
Fil: Turjanski, Pablo Guillermo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina
Fil: Salgado Salter, Juan David. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina
Fil: Alleva, Karina Edith. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Biodiversidad y Biología Experimental y Aplicada. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad y Biología Experimental y Aplicada; Argentina
Fil: Carrari, Fernando Oscar. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; Argentina
Fil: Giovannoni, James J.. Cornell University; Estados Unidos
Fil: Estevez, Jose Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina
Fil: Iusem, Norberto Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina
Materia
Tomato
ASR1
ChIP-seq
Water stress
Cell wall
Aquaporin
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/36571

id CONICETDig_5e5cd85bdff667993f87126051f15229
oai_identifier_str oai:ri.conicet.gov.ar:11336/36571
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Genome-wide data (ChIP-seq) enabled identification of cell wall-related and aquaporin genes as targets of tomato ASR1, a drought stress-responsive transcription factorRicardi, Martiniano MaríaGonzález, Rodrigo MatíasZhong, SilinDominguez, Pia GuadalupeDuffy, TomásTurjanski, Pablo GuillermoSalgado Salter, Juan DavidAlleva, Karina EdithCarrari, Fernando OscarGiovannoni, James J.Estevez, Jose ManuelIusem, Norberto DanielTomatoASR1ChIP-seqWater stressCell wallAquaporinhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Background: Identifying the target genes of transcription factors is important for unraveling regulatory networks in all types of organisms. Our interest was precisely to uncover the spectrum of loci regulated by a widespread plant transcription factor involved in physiological adaptation to drought, a type of stress that plants have encountered since the colonization of land habitats 400 MYA. The regulator under study, named ASR1, is exclusive to the plant kingdom (albeit absent in Arabidopsis) and known to alleviate the stress caused by restricted water availability. As its target genes are still unknown despite the original cloning of Asr1 cDNA 20 years ago, we examined the tomato genome for specific loci interacting in vivo with this conspicuous protein. Results: We performed ChIP followed by high throughput DNA sequencing (ChIP-seq) on leaves from stressed tomato plants, using a high-quality anti-ASR1 antibody. In this way, we unraveled a novel repertoire of target genes, some of which are clearly involved in the response to drought stress. Many of the ASR1-enriched genomic loci we found encode enzymes involved in cell wall synthesis and remodeling as well as channels implicated in water and solute flux, such as aquaporins. In addition, we were able to determine a robust consensus ASR1-binding DNA motif.Conclusions: The finding of cell wall synthesis and aquaporin genes as targets of ASR1 is consistent with their suggested role in the physiological adaptation of plants to water loss. The results gain insight into the environmental stress-sensing pathways leading to plant tolerance of drought. © 2014 Ricardi et al.; licensee BioMed Central Ltd.Fil: Ricardi, Martiniano María. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: González, Rodrigo Matías. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Zhong, Silin. Boyce Thompson Institute For Plant Research;Fil: Dominguez, Pia Guadalupe. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; ArgentinaFil: Duffy, Tomás. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; ArgentinaFil: Turjanski, Pablo Guillermo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; ArgentinaFil: Salgado Salter, Juan David. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Alleva, Karina Edith. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Biodiversidad y Biología Experimental y Aplicada. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad y Biología Experimental y Aplicada; ArgentinaFil: Carrari, Fernando Oscar. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; ArgentinaFil: Giovannoni, James J.. Cornell University; Estados UnidosFil: Estevez, Jose Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Iusem, Norberto Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaBioMed Central2014-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/36571Ricardi, Martiniano María; González, Rodrigo Matías; Zhong, Silin; Dominguez, Pia Guadalupe; Duffy, Tomás; et al.; Genome-wide data (ChIP-seq) enabled identification of cell wall-related and aquaporin genes as targets of tomato ASR1, a drought stress-responsive transcription factor; BioMed Central; BMC Plant Biology; 14; 29; 1-2014; 1-141471-2229CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.biomedcentral.com/1471-2229/14/29info:eu-repo/semantics/altIdentifier/doi/10.1186/1471-2229-14-29info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:00:50Zoai:ri.conicet.gov.ar:11336/36571instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:00:51.066CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Genome-wide data (ChIP-seq) enabled identification of cell wall-related and aquaporin genes as targets of tomato ASR1, a drought stress-responsive transcription factor
title Genome-wide data (ChIP-seq) enabled identification of cell wall-related and aquaporin genes as targets of tomato ASR1, a drought stress-responsive transcription factor
spellingShingle Genome-wide data (ChIP-seq) enabled identification of cell wall-related and aquaporin genes as targets of tomato ASR1, a drought stress-responsive transcription factor
Ricardi, Martiniano María
Tomato
ASR1
ChIP-seq
Water stress
Cell wall
Aquaporin
title_short Genome-wide data (ChIP-seq) enabled identification of cell wall-related and aquaporin genes as targets of tomato ASR1, a drought stress-responsive transcription factor
title_full Genome-wide data (ChIP-seq) enabled identification of cell wall-related and aquaporin genes as targets of tomato ASR1, a drought stress-responsive transcription factor
title_fullStr Genome-wide data (ChIP-seq) enabled identification of cell wall-related and aquaporin genes as targets of tomato ASR1, a drought stress-responsive transcription factor
title_full_unstemmed Genome-wide data (ChIP-seq) enabled identification of cell wall-related and aquaporin genes as targets of tomato ASR1, a drought stress-responsive transcription factor
title_sort Genome-wide data (ChIP-seq) enabled identification of cell wall-related and aquaporin genes as targets of tomato ASR1, a drought stress-responsive transcription factor
dc.creator.none.fl_str_mv Ricardi, Martiniano María
González, Rodrigo Matías
Zhong, Silin
Dominguez, Pia Guadalupe
Duffy, Tomás
Turjanski, Pablo Guillermo
Salgado Salter, Juan David
Alleva, Karina Edith
Carrari, Fernando Oscar
Giovannoni, James J.
Estevez, Jose Manuel
Iusem, Norberto Daniel
author Ricardi, Martiniano María
author_facet Ricardi, Martiniano María
González, Rodrigo Matías
Zhong, Silin
Dominguez, Pia Guadalupe
Duffy, Tomás
Turjanski, Pablo Guillermo
Salgado Salter, Juan David
Alleva, Karina Edith
Carrari, Fernando Oscar
Giovannoni, James J.
Estevez, Jose Manuel
Iusem, Norberto Daniel
author_role author
author2 González, Rodrigo Matías
Zhong, Silin
Dominguez, Pia Guadalupe
Duffy, Tomás
Turjanski, Pablo Guillermo
Salgado Salter, Juan David
Alleva, Karina Edith
Carrari, Fernando Oscar
Giovannoni, James J.
Estevez, Jose Manuel
Iusem, Norberto Daniel
author2_role author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Tomato
ASR1
ChIP-seq
Water stress
Cell wall
Aquaporin
topic Tomato
ASR1
ChIP-seq
Water stress
Cell wall
Aquaporin
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Background: Identifying the target genes of transcription factors is important for unraveling regulatory networks in all types of organisms. Our interest was precisely to uncover the spectrum of loci regulated by a widespread plant transcription factor involved in physiological adaptation to drought, a type of stress that plants have encountered since the colonization of land habitats 400 MYA. The regulator under study, named ASR1, is exclusive to the plant kingdom (albeit absent in Arabidopsis) and known to alleviate the stress caused by restricted water availability. As its target genes are still unknown despite the original cloning of Asr1 cDNA 20 years ago, we examined the tomato genome for specific loci interacting in vivo with this conspicuous protein. Results: We performed ChIP followed by high throughput DNA sequencing (ChIP-seq) on leaves from stressed tomato plants, using a high-quality anti-ASR1 antibody. In this way, we unraveled a novel repertoire of target genes, some of which are clearly involved in the response to drought stress. Many of the ASR1-enriched genomic loci we found encode enzymes involved in cell wall synthesis and remodeling as well as channels implicated in water and solute flux, such as aquaporins. In addition, we were able to determine a robust consensus ASR1-binding DNA motif.Conclusions: The finding of cell wall synthesis and aquaporin genes as targets of ASR1 is consistent with their suggested role in the physiological adaptation of plants to water loss. The results gain insight into the environmental stress-sensing pathways leading to plant tolerance of drought. © 2014 Ricardi et al.; licensee BioMed Central Ltd.
Fil: Ricardi, Martiniano María. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina
Fil: González, Rodrigo Matías. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina
Fil: Zhong, Silin. Boyce Thompson Institute For Plant Research;
Fil: Dominguez, Pia Guadalupe. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; Argentina
Fil: Duffy, Tomás. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; Argentina
Fil: Turjanski, Pablo Guillermo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina
Fil: Salgado Salter, Juan David. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina
Fil: Alleva, Karina Edith. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Biodiversidad y Biología Experimental y Aplicada. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad y Biología Experimental y Aplicada; Argentina
Fil: Carrari, Fernando Oscar. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; Argentina
Fil: Giovannoni, James J.. Cornell University; Estados Unidos
Fil: Estevez, Jose Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina
Fil: Iusem, Norberto Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina
description Background: Identifying the target genes of transcription factors is important for unraveling regulatory networks in all types of organisms. Our interest was precisely to uncover the spectrum of loci regulated by a widespread plant transcription factor involved in physiological adaptation to drought, a type of stress that plants have encountered since the colonization of land habitats 400 MYA. The regulator under study, named ASR1, is exclusive to the plant kingdom (albeit absent in Arabidopsis) and known to alleviate the stress caused by restricted water availability. As its target genes are still unknown despite the original cloning of Asr1 cDNA 20 years ago, we examined the tomato genome for specific loci interacting in vivo with this conspicuous protein. Results: We performed ChIP followed by high throughput DNA sequencing (ChIP-seq) on leaves from stressed tomato plants, using a high-quality anti-ASR1 antibody. In this way, we unraveled a novel repertoire of target genes, some of which are clearly involved in the response to drought stress. Many of the ASR1-enriched genomic loci we found encode enzymes involved in cell wall synthesis and remodeling as well as channels implicated in water and solute flux, such as aquaporins. In addition, we were able to determine a robust consensus ASR1-binding DNA motif.Conclusions: The finding of cell wall synthesis and aquaporin genes as targets of ASR1 is consistent with their suggested role in the physiological adaptation of plants to water loss. The results gain insight into the environmental stress-sensing pathways leading to plant tolerance of drought. © 2014 Ricardi et al.; licensee BioMed Central Ltd.
publishDate 2014
dc.date.none.fl_str_mv 2014-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/36571
Ricardi, Martiniano María; González, Rodrigo Matías; Zhong, Silin; Dominguez, Pia Guadalupe; Duffy, Tomás; et al.; Genome-wide data (ChIP-seq) enabled identification of cell wall-related and aquaporin genes as targets of tomato ASR1, a drought stress-responsive transcription factor; BioMed Central; BMC Plant Biology; 14; 29; 1-2014; 1-14
1471-2229
CONICET Digital
CONICET
url http://hdl.handle.net/11336/36571
identifier_str_mv Ricardi, Martiniano María; González, Rodrigo Matías; Zhong, Silin; Dominguez, Pia Guadalupe; Duffy, Tomás; et al.; Genome-wide data (ChIP-seq) enabled identification of cell wall-related and aquaporin genes as targets of tomato ASR1, a drought stress-responsive transcription factor; BioMed Central; BMC Plant Biology; 14; 29; 1-2014; 1-14
1471-2229
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.biomedcentral.com/1471-2229/14/29
info:eu-repo/semantics/altIdentifier/doi/10.1186/1471-2229-14-29
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv BioMed Central
publisher.none.fl_str_mv BioMed Central
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269662558027776
score 13.13397