Genome-wide data (ChIP-seq) enabled identification of cell wall-related and aquaporin genes as targets of tomato ASR1, a drought stress-responsive transcription factor
- Autores
- Ricardi, Martiniano María; González, Rodrigo Matías; Silin, Zhong; Dominguez, Pia Guadalupe; Duffy, Tomas; Turjanski, Pablo Guillermo; Salgado Salter, Juan David; Alleva, Karina Edith; Carrari, Fernando; Giovannoni, James J.; Estevez, Jose Manuel; Iusem, Norberto Daniel
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Background: Identifying the target genes of transcription factors is important for unraveling regulatory networks in all types of organisms. Our interest was precisely to uncover the spectrum of loci regulated by a widespread plant transcription factor involved in physiological adaptation to drought, a type of stress that plants have encountered since the colonization of land habitats 400 MYA. The regulator under study, named ASR1, is exclusive to the plant kingdom (albeit absent in Arabidopsis) and known to alleviate the stress caused by restricted water availability. As its target genes are still unknown despite the original cloning of Asr1 cDNA 20 years ago, we examined the tomato genome for specific loci interacting in vivo with this conspicuous protein. Results: We performed ChIP followed by high throughput DNA sequencing (ChIP-seq) on leaves from stressed tomato plants, using a high-quality anti-ASR1 antibody. In this way, we unraveled a novel repertoire of target genes, some of which are clearly involved in the response to drought stress. Many of the ASR1-enriched genomic loci we found encode enzymes involved in cell wall synthesis and remodeling as well as channels implicated in water and solute flux, such as aquaporins. In addition, we were able to determine a robust consensus ASR1-binding DNA motif. Conclusions: The finding of cell wall synthesis and aquaporin genes as targets of ASR1 is consistent with their suggested role in the physiological adaptation of plants to water loss. The results gain insight into the environmental stress-sensing pathways leading to plant tolerance of drought.
Instituto de Biotecnología
Fil: Ricardi, Martiniano María. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina
Fil: González, Rodrigo Matías. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina
Fil: Silin, Zhong. Cornell University. Boyce Thompson Institute For Plant Research; Estados Unidos
Fil: Dominguez, Pia Guadalupe. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Biotecnología; Argentina
Fil: Duffy, Tomás. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Biotecnología; Argentina
Fil: Turjanski, Pablo Guillermo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina
Fil: Salgado Salter, Juan David. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina
Fil: Alleva, Karina Edith. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Biodiversidad y Biología Experimental y Aplicada. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad y Biología Experimental y Aplicada; Argentina
Fil: Carrari, Fernando Oscar. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Biotecnología; Argentina
Fil: Giovannoni, James J. Cornell University. Department of Plant Biology; Estados Unidos
Fil: Estevez, Jose Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina
Fil: Iusem, Norberto Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Fisiología, Biología Molecular y Celular; Argentina - Fuente
- BMC Plant Biology 14 : 29 (2014)
- Materia
-
Tomate
Genética
Genomas
Pared Celular
Estrés de Sequia
Tomatoes
Genetics
Genomes
Cell Walls
Drought Stress
Drought Resistance
Resistencia a la Sequía - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Instituto Nacional de Tecnología Agropecuaria
- OAI Identificador
- oai:localhost:20.500.12123/4290
Ver los metadatos del registro completo
id |
INTADig_bc0ac52a78782293e44e3a5fd6b59689 |
---|---|
oai_identifier_str |
oai:localhost:20.500.12123/4290 |
network_acronym_str |
INTADig |
repository_id_str |
l |
network_name_str |
INTA Digital (INTA) |
spelling |
Genome-wide data (ChIP-seq) enabled identification of cell wall-related and aquaporin genes as targets of tomato ASR1, a drought stress-responsive transcription factorRicardi, Martiniano MaríaGonzález, Rodrigo MatíasSilin, ZhongDominguez, Pia GuadalupeDuffy, TomasTurjanski, Pablo GuillermoSalgado Salter, Juan DavidAlleva, Karina EdithCarrari, FernandoGiovannoni, James J.Estevez, Jose ManuelIusem, Norberto DanielTomateGenéticaGenomasPared CelularEstrés de SequiaTomatoesGeneticsGenomesCell WallsDrought StressDrought ResistanceResistencia a la SequíaBackground: Identifying the target genes of transcription factors is important for unraveling regulatory networks in all types of organisms. Our interest was precisely to uncover the spectrum of loci regulated by a widespread plant transcription factor involved in physiological adaptation to drought, a type of stress that plants have encountered since the colonization of land habitats 400 MYA. The regulator under study, named ASR1, is exclusive to the plant kingdom (albeit absent in Arabidopsis) and known to alleviate the stress caused by restricted water availability. As its target genes are still unknown despite the original cloning of Asr1 cDNA 20 years ago, we examined the tomato genome for specific loci interacting in vivo with this conspicuous protein. Results: We performed ChIP followed by high throughput DNA sequencing (ChIP-seq) on leaves from stressed tomato plants, using a high-quality anti-ASR1 antibody. In this way, we unraveled a novel repertoire of target genes, some of which are clearly involved in the response to drought stress. Many of the ASR1-enriched genomic loci we found encode enzymes involved in cell wall synthesis and remodeling as well as channels implicated in water and solute flux, such as aquaporins. In addition, we were able to determine a robust consensus ASR1-binding DNA motif. Conclusions: The finding of cell wall synthesis and aquaporin genes as targets of ASR1 is consistent with their suggested role in the physiological adaptation of plants to water loss. The results gain insight into the environmental stress-sensing pathways leading to plant tolerance of drought.Instituto de BiotecnologíaFil: Ricardi, Martiniano María. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: González, Rodrigo Matías. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Silin, Zhong. Cornell University. Boyce Thompson Institute For Plant Research; Estados UnidosFil: Dominguez, Pia Guadalupe. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Biotecnología; ArgentinaFil: Duffy, Tomás. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Biotecnología; ArgentinaFil: Turjanski, Pablo Guillermo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; ArgentinaFil: Salgado Salter, Juan David. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Alleva, Karina Edith. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Biodiversidad y Biología Experimental y Aplicada. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad y Biología Experimental y Aplicada; ArgentinaFil: Carrari, Fernando Oscar. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Biotecnología; ArgentinaFil: Giovannoni, James J. Cornell University. Department of Plant Biology; Estados UnidosFil: Estevez, Jose Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Iusem, Norberto Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Fisiología, Biología Molecular y Celular; ArgentinaBMC2019-01-18T11:42:26Z2019-01-18T11:42:26Z2014-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttps://bmcplantbiol.biomedcentral.com/articles/10.1186/1471-2229-14-29http://hdl.handle.net/20.500.12123/42901471-2229https://doi.org/10.1186/1471-2229-14-29BMC Plant Biology 14 : 29 (2014)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-10-16T09:29:25Zoai:localhost:20.500.12123/4290instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-10-16 09:29:25.617INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse |
dc.title.none.fl_str_mv |
Genome-wide data (ChIP-seq) enabled identification of cell wall-related and aquaporin genes as targets of tomato ASR1, a drought stress-responsive transcription factor |
title |
Genome-wide data (ChIP-seq) enabled identification of cell wall-related and aquaporin genes as targets of tomato ASR1, a drought stress-responsive transcription factor |
spellingShingle |
Genome-wide data (ChIP-seq) enabled identification of cell wall-related and aquaporin genes as targets of tomato ASR1, a drought stress-responsive transcription factor Ricardi, Martiniano María Tomate Genética Genomas Pared Celular Estrés de Sequia Tomatoes Genetics Genomes Cell Walls Drought Stress Drought Resistance Resistencia a la Sequía |
title_short |
Genome-wide data (ChIP-seq) enabled identification of cell wall-related and aquaporin genes as targets of tomato ASR1, a drought stress-responsive transcription factor |
title_full |
Genome-wide data (ChIP-seq) enabled identification of cell wall-related and aquaporin genes as targets of tomato ASR1, a drought stress-responsive transcription factor |
title_fullStr |
Genome-wide data (ChIP-seq) enabled identification of cell wall-related and aquaporin genes as targets of tomato ASR1, a drought stress-responsive transcription factor |
title_full_unstemmed |
Genome-wide data (ChIP-seq) enabled identification of cell wall-related and aquaporin genes as targets of tomato ASR1, a drought stress-responsive transcription factor |
title_sort |
Genome-wide data (ChIP-seq) enabled identification of cell wall-related and aquaporin genes as targets of tomato ASR1, a drought stress-responsive transcription factor |
dc.creator.none.fl_str_mv |
Ricardi, Martiniano María González, Rodrigo Matías Silin, Zhong Dominguez, Pia Guadalupe Duffy, Tomas Turjanski, Pablo Guillermo Salgado Salter, Juan David Alleva, Karina Edith Carrari, Fernando Giovannoni, James J. Estevez, Jose Manuel Iusem, Norberto Daniel |
author |
Ricardi, Martiniano María |
author_facet |
Ricardi, Martiniano María González, Rodrigo Matías Silin, Zhong Dominguez, Pia Guadalupe Duffy, Tomas Turjanski, Pablo Guillermo Salgado Salter, Juan David Alleva, Karina Edith Carrari, Fernando Giovannoni, James J. Estevez, Jose Manuel Iusem, Norberto Daniel |
author_role |
author |
author2 |
González, Rodrigo Matías Silin, Zhong Dominguez, Pia Guadalupe Duffy, Tomas Turjanski, Pablo Guillermo Salgado Salter, Juan David Alleva, Karina Edith Carrari, Fernando Giovannoni, James J. Estevez, Jose Manuel Iusem, Norberto Daniel |
author2_role |
author author author author author author author author author author author |
dc.subject.none.fl_str_mv |
Tomate Genética Genomas Pared Celular Estrés de Sequia Tomatoes Genetics Genomes Cell Walls Drought Stress Drought Resistance Resistencia a la Sequía |
topic |
Tomate Genética Genomas Pared Celular Estrés de Sequia Tomatoes Genetics Genomes Cell Walls Drought Stress Drought Resistance Resistencia a la Sequía |
dc.description.none.fl_txt_mv |
Background: Identifying the target genes of transcription factors is important for unraveling regulatory networks in all types of organisms. Our interest was precisely to uncover the spectrum of loci regulated by a widespread plant transcription factor involved in physiological adaptation to drought, a type of stress that plants have encountered since the colonization of land habitats 400 MYA. The regulator under study, named ASR1, is exclusive to the plant kingdom (albeit absent in Arabidopsis) and known to alleviate the stress caused by restricted water availability. As its target genes are still unknown despite the original cloning of Asr1 cDNA 20 years ago, we examined the tomato genome for specific loci interacting in vivo with this conspicuous protein. Results: We performed ChIP followed by high throughput DNA sequencing (ChIP-seq) on leaves from stressed tomato plants, using a high-quality anti-ASR1 antibody. In this way, we unraveled a novel repertoire of target genes, some of which are clearly involved in the response to drought stress. Many of the ASR1-enriched genomic loci we found encode enzymes involved in cell wall synthesis and remodeling as well as channels implicated in water and solute flux, such as aquaporins. In addition, we were able to determine a robust consensus ASR1-binding DNA motif. Conclusions: The finding of cell wall synthesis and aquaporin genes as targets of ASR1 is consistent with their suggested role in the physiological adaptation of plants to water loss. The results gain insight into the environmental stress-sensing pathways leading to plant tolerance of drought. Instituto de Biotecnología Fil: Ricardi, Martiniano María. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina Fil: González, Rodrigo Matías. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina Fil: Silin, Zhong. Cornell University. Boyce Thompson Institute For Plant Research; Estados Unidos Fil: Dominguez, Pia Guadalupe. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Biotecnología; Argentina Fil: Duffy, Tomás. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Biotecnología; Argentina Fil: Turjanski, Pablo Guillermo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina Fil: Salgado Salter, Juan David. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina Fil: Alleva, Karina Edith. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Biodiversidad y Biología Experimental y Aplicada. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad y Biología Experimental y Aplicada; Argentina Fil: Carrari, Fernando Oscar. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Biotecnología; Argentina Fil: Giovannoni, James J. Cornell University. Department of Plant Biology; Estados Unidos Fil: Estevez, Jose Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina Fil: Iusem, Norberto Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Fisiología, Biología Molecular y Celular; Argentina |
description |
Background: Identifying the target genes of transcription factors is important for unraveling regulatory networks in all types of organisms. Our interest was precisely to uncover the spectrum of loci regulated by a widespread plant transcription factor involved in physiological adaptation to drought, a type of stress that plants have encountered since the colonization of land habitats 400 MYA. The regulator under study, named ASR1, is exclusive to the plant kingdom (albeit absent in Arabidopsis) and known to alleviate the stress caused by restricted water availability. As its target genes are still unknown despite the original cloning of Asr1 cDNA 20 years ago, we examined the tomato genome for specific loci interacting in vivo with this conspicuous protein. Results: We performed ChIP followed by high throughput DNA sequencing (ChIP-seq) on leaves from stressed tomato plants, using a high-quality anti-ASR1 antibody. In this way, we unraveled a novel repertoire of target genes, some of which are clearly involved in the response to drought stress. Many of the ASR1-enriched genomic loci we found encode enzymes involved in cell wall synthesis and remodeling as well as channels implicated in water and solute flux, such as aquaporins. In addition, we were able to determine a robust consensus ASR1-binding DNA motif. Conclusions: The finding of cell wall synthesis and aquaporin genes as targets of ASR1 is consistent with their suggested role in the physiological adaptation of plants to water loss. The results gain insight into the environmental stress-sensing pathways leading to plant tolerance of drought. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-01 2019-01-18T11:42:26Z 2019-01-18T11:42:26Z |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://bmcplantbiol.biomedcentral.com/articles/10.1186/1471-2229-14-29 http://hdl.handle.net/20.500.12123/4290 1471-2229 https://doi.org/10.1186/1471-2229-14-29 |
url |
https://bmcplantbiol.biomedcentral.com/articles/10.1186/1471-2229-14-29 http://hdl.handle.net/20.500.12123/4290 https://doi.org/10.1186/1471-2229-14-29 |
identifier_str_mv |
1471-2229 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
BMC |
publisher.none.fl_str_mv |
BMC |
dc.source.none.fl_str_mv |
BMC Plant Biology 14 : 29 (2014) reponame:INTA Digital (INTA) instname:Instituto Nacional de Tecnología Agropecuaria |
reponame_str |
INTA Digital (INTA) |
collection |
INTA Digital (INTA) |
instname_str |
Instituto Nacional de Tecnología Agropecuaria |
repository.name.fl_str_mv |
INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria |
repository.mail.fl_str_mv |
tripaldi.nicolas@inta.gob.ar |
_version_ |
1846143510179217408 |
score |
12.712165 |