Developing a Pan-Genome of the diplosporous grass Eragrostis curvula
- Autores
- Bongiorno, G.; Carballo, José; Gallo, Cristian Andrés; Albertini, Emiliano; Zappacosta, Diego Carlos; Echenique, Carmen Viviana
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- As large-scale genomic studies have progressed, it has been revealed that a single reference genome patterncannot represent the genetic diversity present at the species level. The pangenome can complement themissing genetic information based on the analysis of a single reference genome, exhibit hidden geneticvariations, and demonstrate the true genetic diversity at the species level. The progress of pangenomeresearch in different species has allowed the identification of large structural variants related to importantagronomic traits. Weeping lovegrass (Eragrostis curvula [Schrad.] Nees) is a forage grass that reproduces bysexuality and by facultative and obligate apomixis. It presents distinctive variants with different ploidy levels(2x – 8x) and a basic chromosome number of 10. The recent availability of the genome assembly of cv.Victoria has provided a valuable resource for identifying specific genomic regions linked to significant traits,for instance, forage quality. However, it is worth noting that the regions that control apomixis and othersrelated with ploidy are typically hosted by genotypes with higher ploidy levels. In this work, we focused on constructing a pan-genome of Eragrostis curvula to detect genomic variation,establish phylogenetic relationships, and analyze the effects of ploidy in genome evolution and reproductivemode. To do that, we used the genome assembly of cv. Victoria and genomic data, obtained by Illumina reads,of nine genetically diverse accessions of E. curvula. The construction of the pan-genome employed an iterativemapping and assembly approach involving the mapping of reads from different genotypes to the referencegenome assembly. The mapped reads were used for variant calling, while the unmapped reads wereassembled into new genomic fragments to annotate genes absent in the reference genome. These newlyassembled sequences were subsequently integrated into the reference genome, and the process was repeatediteratively for other genotypes. When all the accessions were processed, the final pan-genome comprised thereference genome and the newly assembled sequences. This approach proved to be highly efficient forconstructing a pan-genome exploiting the reference genome and the assembly of genetically distantgenotypes of E. curvula. Ultimately, the genomic resources generated were employed to gain a comprehensiveunderstanding of the genetic mechanisms underlying apomixis and related processes.
Fil: Bongiorno, G.. Università di Perugia; Italia
Fil: Carballo, José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiárida; Argentina. Universidad Nacional del Sur. Departamento de Agronomía; Argentina
Fil: Gallo, Cristian Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiárida; Argentina
Fil: Albertini, Emiliano. Università di Perugia; Italia
Fil: Zappacosta, Diego Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiárida; Argentina. Universidad Nacional del Sur. Departamento de Agronomía; Argentina
Fil: Echenique, Carmen Viviana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiárida; Argentina. Universidad Nacional del Sur. Departamento de Agronomía; Argentina
IV International Congress on Apomixis
Rosario
Argentina
Committee Organisation of IV International Congress on Apomixis - Materia
-
APOMIXIS
PANGENOME
NGS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/241146
Ver los metadatos del registro completo
id |
CONICETDig_5d3bd03b181a7180411049c539e9c03c |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/241146 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Developing a Pan-Genome of the diplosporous grass Eragrostis curvulaBongiorno, G.Carballo, JoséGallo, Cristian AndrésAlbertini, EmilianoZappacosta, Diego CarlosEchenique, Carmen VivianaAPOMIXISPANGENOMENGShttps://purl.org/becyt/ford/4.4https://purl.org/becyt/ford/4As large-scale genomic studies have progressed, it has been revealed that a single reference genome patterncannot represent the genetic diversity present at the species level. The pangenome can complement themissing genetic information based on the analysis of a single reference genome, exhibit hidden geneticvariations, and demonstrate the true genetic diversity at the species level. The progress of pangenomeresearch in different species has allowed the identification of large structural variants related to importantagronomic traits. Weeping lovegrass (Eragrostis curvula [Schrad.] Nees) is a forage grass that reproduces bysexuality and by facultative and obligate apomixis. It presents distinctive variants with different ploidy levels(2x – 8x) and a basic chromosome number of 10. The recent availability of the genome assembly of cv.Victoria has provided a valuable resource for identifying specific genomic regions linked to significant traits,for instance, forage quality. However, it is worth noting that the regions that control apomixis and othersrelated with ploidy are typically hosted by genotypes with higher ploidy levels. In this work, we focused on constructing a pan-genome of Eragrostis curvula to detect genomic variation,establish phylogenetic relationships, and analyze the effects of ploidy in genome evolution and reproductivemode. To do that, we used the genome assembly of cv. Victoria and genomic data, obtained by Illumina reads,of nine genetically diverse accessions of E. curvula. The construction of the pan-genome employed an iterativemapping and assembly approach involving the mapping of reads from different genotypes to the referencegenome assembly. The mapped reads were used for variant calling, while the unmapped reads wereassembled into new genomic fragments to annotate genes absent in the reference genome. These newlyassembled sequences were subsequently integrated into the reference genome, and the process was repeatediteratively for other genotypes. When all the accessions were processed, the final pan-genome comprised thereference genome and the newly assembled sequences. This approach proved to be highly efficient forconstructing a pan-genome exploiting the reference genome and the assembly of genetically distantgenotypes of E. curvula. Ultimately, the genomic resources generated were employed to gain a comprehensiveunderstanding of the genetic mechanisms underlying apomixis and related processes.Fil: Bongiorno, G.. Università di Perugia; ItaliaFil: Carballo, José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiárida; Argentina. Universidad Nacional del Sur. Departamento de Agronomía; ArgentinaFil: Gallo, Cristian Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiárida; ArgentinaFil: Albertini, Emiliano. Università di Perugia; ItaliaFil: Zappacosta, Diego Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiárida; Argentina. Universidad Nacional del Sur. Departamento de Agronomía; ArgentinaFil: Echenique, Carmen Viviana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiárida; Argentina. Universidad Nacional del Sur. Departamento de Agronomía; ArgentinaIV International Congress on ApomixisRosarioArgentinaCommittee Organisation of IV International Congress on ApomixisCommittee Organisation of IV International Congress on Apomixis2023info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectCongresoBookhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/241146Developing a Pan-Genome of the diplosporous grass Eragrostis curvula; IV International Congress on Apomixis; Rosario; Argentina; 2023; 31-31CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://apomixis2023.com.ar/wp-content/uploads/APOMIXIS-2023-book-of-abstracts.pdfInternacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:35:08Zoai:ri.conicet.gov.ar:11336/241146instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:35:08.361CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Developing a Pan-Genome of the diplosporous grass Eragrostis curvula |
title |
Developing a Pan-Genome of the diplosporous grass Eragrostis curvula |
spellingShingle |
Developing a Pan-Genome of the diplosporous grass Eragrostis curvula Bongiorno, G. APOMIXIS PANGENOME NGS |
title_short |
Developing a Pan-Genome of the diplosporous grass Eragrostis curvula |
title_full |
Developing a Pan-Genome of the diplosporous grass Eragrostis curvula |
title_fullStr |
Developing a Pan-Genome of the diplosporous grass Eragrostis curvula |
title_full_unstemmed |
Developing a Pan-Genome of the diplosporous grass Eragrostis curvula |
title_sort |
Developing a Pan-Genome of the diplosporous grass Eragrostis curvula |
dc.creator.none.fl_str_mv |
Bongiorno, G. Carballo, José Gallo, Cristian Andrés Albertini, Emiliano Zappacosta, Diego Carlos Echenique, Carmen Viviana |
author |
Bongiorno, G. |
author_facet |
Bongiorno, G. Carballo, José Gallo, Cristian Andrés Albertini, Emiliano Zappacosta, Diego Carlos Echenique, Carmen Viviana |
author_role |
author |
author2 |
Carballo, José Gallo, Cristian Andrés Albertini, Emiliano Zappacosta, Diego Carlos Echenique, Carmen Viviana |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
APOMIXIS PANGENOME NGS |
topic |
APOMIXIS PANGENOME NGS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/4.4 https://purl.org/becyt/ford/4 |
dc.description.none.fl_txt_mv |
As large-scale genomic studies have progressed, it has been revealed that a single reference genome patterncannot represent the genetic diversity present at the species level. The pangenome can complement themissing genetic information based on the analysis of a single reference genome, exhibit hidden geneticvariations, and demonstrate the true genetic diversity at the species level. The progress of pangenomeresearch in different species has allowed the identification of large structural variants related to importantagronomic traits. Weeping lovegrass (Eragrostis curvula [Schrad.] Nees) is a forage grass that reproduces bysexuality and by facultative and obligate apomixis. It presents distinctive variants with different ploidy levels(2x – 8x) and a basic chromosome number of 10. The recent availability of the genome assembly of cv.Victoria has provided a valuable resource for identifying specific genomic regions linked to significant traits,for instance, forage quality. However, it is worth noting that the regions that control apomixis and othersrelated with ploidy are typically hosted by genotypes with higher ploidy levels. In this work, we focused on constructing a pan-genome of Eragrostis curvula to detect genomic variation,establish phylogenetic relationships, and analyze the effects of ploidy in genome evolution and reproductivemode. To do that, we used the genome assembly of cv. Victoria and genomic data, obtained by Illumina reads,of nine genetically diverse accessions of E. curvula. The construction of the pan-genome employed an iterativemapping and assembly approach involving the mapping of reads from different genotypes to the referencegenome assembly. The mapped reads were used for variant calling, while the unmapped reads wereassembled into new genomic fragments to annotate genes absent in the reference genome. These newlyassembled sequences were subsequently integrated into the reference genome, and the process was repeatediteratively for other genotypes. When all the accessions were processed, the final pan-genome comprised thereference genome and the newly assembled sequences. This approach proved to be highly efficient forconstructing a pan-genome exploiting the reference genome and the assembly of genetically distantgenotypes of E. curvula. Ultimately, the genomic resources generated were employed to gain a comprehensiveunderstanding of the genetic mechanisms underlying apomixis and related processes. Fil: Bongiorno, G.. Università di Perugia; Italia Fil: Carballo, José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiárida; Argentina. Universidad Nacional del Sur. Departamento de Agronomía; Argentina Fil: Gallo, Cristian Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiárida; Argentina Fil: Albertini, Emiliano. Università di Perugia; Italia Fil: Zappacosta, Diego Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiárida; Argentina. Universidad Nacional del Sur. Departamento de Agronomía; Argentina Fil: Echenique, Carmen Viviana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiárida; Argentina. Universidad Nacional del Sur. Departamento de Agronomía; Argentina IV International Congress on Apomixis Rosario Argentina Committee Organisation of IV International Congress on Apomixis |
description |
As large-scale genomic studies have progressed, it has been revealed that a single reference genome patterncannot represent the genetic diversity present at the species level. The pangenome can complement themissing genetic information based on the analysis of a single reference genome, exhibit hidden geneticvariations, and demonstrate the true genetic diversity at the species level. The progress of pangenomeresearch in different species has allowed the identification of large structural variants related to importantagronomic traits. Weeping lovegrass (Eragrostis curvula [Schrad.] Nees) is a forage grass that reproduces bysexuality and by facultative and obligate apomixis. It presents distinctive variants with different ploidy levels(2x – 8x) and a basic chromosome number of 10. The recent availability of the genome assembly of cv.Victoria has provided a valuable resource for identifying specific genomic regions linked to significant traits,for instance, forage quality. However, it is worth noting that the regions that control apomixis and othersrelated with ploidy are typically hosted by genotypes with higher ploidy levels. In this work, we focused on constructing a pan-genome of Eragrostis curvula to detect genomic variation,establish phylogenetic relationships, and analyze the effects of ploidy in genome evolution and reproductivemode. To do that, we used the genome assembly of cv. Victoria and genomic data, obtained by Illumina reads,of nine genetically diverse accessions of E. curvula. The construction of the pan-genome employed an iterativemapping and assembly approach involving the mapping of reads from different genotypes to the referencegenome assembly. The mapped reads were used for variant calling, while the unmapped reads wereassembled into new genomic fragments to annotate genes absent in the reference genome. These newlyassembled sequences were subsequently integrated into the reference genome, and the process was repeatediteratively for other genotypes. When all the accessions were processed, the final pan-genome comprised thereference genome and the newly assembled sequences. This approach proved to be highly efficient forconstructing a pan-genome exploiting the reference genome and the assembly of genetically distantgenotypes of E. curvula. Ultimately, the genomic resources generated were employed to gain a comprehensiveunderstanding of the genetic mechanisms underlying apomixis and related processes. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/conferenceObject Congreso Book http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
status_str |
publishedVersion |
format |
conferenceObject |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/241146 Developing a Pan-Genome of the diplosporous grass Eragrostis curvula; IV International Congress on Apomixis; Rosario; Argentina; 2023; 31-31 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/241146 |
identifier_str_mv |
Developing a Pan-Genome of the diplosporous grass Eragrostis curvula; IV International Congress on Apomixis; Rosario; Argentina; 2023; 31-31 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://apomixis2023.com.ar/wp-content/uploads/APOMIXIS-2023-book-of-abstracts.pdf |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.coverage.none.fl_str_mv |
Internacional |
dc.publisher.none.fl_str_mv |
Committee Organisation of IV International Congress on Apomixis |
publisher.none.fl_str_mv |
Committee Organisation of IV International Congress on Apomixis |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614369167540224 |
score |
13.070432 |