Correlated Postfiltering and Mutual Information in Pseudoanechoic Model Based Blind Source Separation
- Autores
- Di Persia, Leandro Ezequiel; Milone, Diego Humberto; Yanagida, Masuzo
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In a recent publication the pseudoanechoic mixing model for closely spaced microphones was proposed and a blind audio sources separation algorithm based on this model was developed. This method uses frequency-domain independent component analysis to identify the mixing parameters. These parameters are used to synthesize the separation matrices, and then a time-frequency Wiener postfilter to improve the separation is applied. In this contribution, key aspects of the separation algorithm are optimized with two novel methods. A deeper analysis of the working principles of the Wiener postfilter is presented, which gives an insight in its reverberation reduction capabilities. Also a variation of this postfilter to improve the performance using the information of previous frames is introduced. The basic method uses a fixed central frequency bin for the estimation of the mixture parameters. In this contribution an automatic selection of the central bin, based in the information of the separability of the sources, is introduced. The improvements obtained through these methods are evaluated in an automatic speech recognition task and with the PESQ objective quality measure. The results show an increased robustness and stability of the proposed method, enhancing the separation quality and improving the speech recognition rate of an automatic speech recognition system.
Fil: Di Persia, Leandro Ezequiel. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Departamento de Informática. Laboratorio de Investigaciones En Señales E Inteligencia Computacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Milone, Diego Humberto. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Departamento de Informática. Laboratorio de Investigaciones En Señales E Inteligencia Computacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Yanagida, Masuzo. Doshisha University. Department of Intelligent Information Engineering and Science; Estados Unidos - Materia
-
Pseudoanechoic Model
Blind Source Separation
Mutual Information
Wiener Postfilter
Automatic Speech Recognition
Wiener Postfilter - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/14395
Ver los metadatos del registro completo
id |
CONICETDig_e0d44dc064ace8dae2d68b1ac1cbaa59 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/14395 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Correlated Postfiltering and Mutual Information in Pseudoanechoic Model Based Blind Source SeparationDi Persia, Leandro EzequielMilone, Diego HumbertoYanagida, MasuzoPseudoanechoic ModelBlind Source SeparationMutual InformationWiener PostfilterAutomatic Speech RecognitionWiener Postfilterhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1In a recent publication the pseudoanechoic mixing model for closely spaced microphones was proposed and a blind audio sources separation algorithm based on this model was developed. This method uses frequency-domain independent component analysis to identify the mixing parameters. These parameters are used to synthesize the separation matrices, and then a time-frequency Wiener postfilter to improve the separation is applied. In this contribution, key aspects of the separation algorithm are optimized with two novel methods. A deeper analysis of the working principles of the Wiener postfilter is presented, which gives an insight in its reverberation reduction capabilities. Also a variation of this postfilter to improve the performance using the information of previous frames is introduced. The basic method uses a fixed central frequency bin for the estimation of the mixture parameters. In this contribution an automatic selection of the central bin, based in the information of the separability of the sources, is introduced. The improvements obtained through these methods are evaluated in an automatic speech recognition task and with the PESQ objective quality measure. The results show an increased robustness and stability of the proposed method, enhancing the separation quality and improving the speech recognition rate of an automatic speech recognition system.Fil: Di Persia, Leandro Ezequiel. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Departamento de Informática. Laboratorio de Investigaciones En Señales E Inteligencia Computacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Milone, Diego Humberto. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Departamento de Informática. Laboratorio de Investigaciones En Señales E Inteligencia Computacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Yanagida, Masuzo. Doshisha University. Department of Intelligent Information Engineering and Science; Estados UnidosSpringer2011-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/14395Di Persia, Leandro Ezequiel; Milone, Diego Humberto; Yanagida, Masuzo ; Correlated Postfiltering and Mutual Information in Pseudoanechoic Model Based Blind Source Separation; Springer; Journal Of Signal Processing Systems For Signal Image And Video Technology; 63; 3; 6-2011; 333-3441939-80181939-8115enginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s11265-009-0443-3info:eu-repo/semantics/altIdentifier/doi//10.1007/s11265-009-0443-3info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:51:17Zoai:ri.conicet.gov.ar:11336/14395instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:51:17.775CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Correlated Postfiltering and Mutual Information in Pseudoanechoic Model Based Blind Source Separation |
title |
Correlated Postfiltering and Mutual Information in Pseudoanechoic Model Based Blind Source Separation |
spellingShingle |
Correlated Postfiltering and Mutual Information in Pseudoanechoic Model Based Blind Source Separation Di Persia, Leandro Ezequiel Pseudoanechoic Model Blind Source Separation Mutual Information Wiener Postfilter Automatic Speech Recognition Wiener Postfilter |
title_short |
Correlated Postfiltering and Mutual Information in Pseudoanechoic Model Based Blind Source Separation |
title_full |
Correlated Postfiltering and Mutual Information in Pseudoanechoic Model Based Blind Source Separation |
title_fullStr |
Correlated Postfiltering and Mutual Information in Pseudoanechoic Model Based Blind Source Separation |
title_full_unstemmed |
Correlated Postfiltering and Mutual Information in Pseudoanechoic Model Based Blind Source Separation |
title_sort |
Correlated Postfiltering and Mutual Information in Pseudoanechoic Model Based Blind Source Separation |
dc.creator.none.fl_str_mv |
Di Persia, Leandro Ezequiel Milone, Diego Humberto Yanagida, Masuzo |
author |
Di Persia, Leandro Ezequiel |
author_facet |
Di Persia, Leandro Ezequiel Milone, Diego Humberto Yanagida, Masuzo |
author_role |
author |
author2 |
Milone, Diego Humberto Yanagida, Masuzo |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Pseudoanechoic Model Blind Source Separation Mutual Information Wiener Postfilter Automatic Speech Recognition Wiener Postfilter |
topic |
Pseudoanechoic Model Blind Source Separation Mutual Information Wiener Postfilter Automatic Speech Recognition Wiener Postfilter |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In a recent publication the pseudoanechoic mixing model for closely spaced microphones was proposed and a blind audio sources separation algorithm based on this model was developed. This method uses frequency-domain independent component analysis to identify the mixing parameters. These parameters are used to synthesize the separation matrices, and then a time-frequency Wiener postfilter to improve the separation is applied. In this contribution, key aspects of the separation algorithm are optimized with two novel methods. A deeper analysis of the working principles of the Wiener postfilter is presented, which gives an insight in its reverberation reduction capabilities. Also a variation of this postfilter to improve the performance using the information of previous frames is introduced. The basic method uses a fixed central frequency bin for the estimation of the mixture parameters. In this contribution an automatic selection of the central bin, based in the information of the separability of the sources, is introduced. The improvements obtained through these methods are evaluated in an automatic speech recognition task and with the PESQ objective quality measure. The results show an increased robustness and stability of the proposed method, enhancing the separation quality and improving the speech recognition rate of an automatic speech recognition system. Fil: Di Persia, Leandro Ezequiel. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Departamento de Informática. Laboratorio de Investigaciones En Señales E Inteligencia Computacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Milone, Diego Humberto. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Departamento de Informática. Laboratorio de Investigaciones En Señales E Inteligencia Computacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Yanagida, Masuzo. Doshisha University. Department of Intelligent Information Engineering and Science; Estados Unidos |
description |
In a recent publication the pseudoanechoic mixing model for closely spaced microphones was proposed and a blind audio sources separation algorithm based on this model was developed. This method uses frequency-domain independent component analysis to identify the mixing parameters. These parameters are used to synthesize the separation matrices, and then a time-frequency Wiener postfilter to improve the separation is applied. In this contribution, key aspects of the separation algorithm are optimized with two novel methods. A deeper analysis of the working principles of the Wiener postfilter is presented, which gives an insight in its reverberation reduction capabilities. Also a variation of this postfilter to improve the performance using the information of previous frames is introduced. The basic method uses a fixed central frequency bin for the estimation of the mixture parameters. In this contribution an automatic selection of the central bin, based in the information of the separability of the sources, is introduced. The improvements obtained through these methods are evaluated in an automatic speech recognition task and with the PESQ objective quality measure. The results show an increased robustness and stability of the proposed method, enhancing the separation quality and improving the speech recognition rate of an automatic speech recognition system. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/14395 Di Persia, Leandro Ezequiel; Milone, Diego Humberto; Yanagida, Masuzo ; Correlated Postfiltering and Mutual Information in Pseudoanechoic Model Based Blind Source Separation; Springer; Journal Of Signal Processing Systems For Signal Image And Video Technology; 63; 3; 6-2011; 333-344 1939-8018 1939-8115 |
url |
http://hdl.handle.net/11336/14395 |
identifier_str_mv |
Di Persia, Leandro Ezequiel; Milone, Diego Humberto; Yanagida, Masuzo ; Correlated Postfiltering and Mutual Information in Pseudoanechoic Model Based Blind Source Separation; Springer; Journal Of Signal Processing Systems For Signal Image And Video Technology; 63; 3; 6-2011; 333-344 1939-8018 1939-8115 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s11265-009-0443-3 info:eu-repo/semantics/altIdentifier/doi//10.1007/s11265-009-0443-3 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613577735929856 |
score |
13.070432 |