Automatic ear detection and feature extraction using Geometric Morphometrics and Convolutional Neural Networks
- Autores
- Cintas, Celia; Quinto Sanchez, Mirsha Emmanuel; Acuña,Victor; Paschetta, Carolina Andrea; de Azevedo, Soledad; Silva de Cerqueira, Caio Cesar; Ramallo, Virginia; Gallo, Carla; Poletti, Giovanni; Bortolini, Maria Catira; Canizales Quinteros, Samuel; Rothhammer, Francisco; Bedoya, Gabriel; Ruiz Linares, Andres; González José, Rolando; Delrieux, Claudio Augusto
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Accurate gathering of phenotypic information is a key aspect in several subject matters, including biometrics, biomedical analysis, forensics, and many other. Automatic identification of anatomical structures of biometric interest, such as fingerprints, iris patterns, or facial traits, are extensively used in applications like access control and anthropological research, all having in common the drawback of requiring intrusive means for acquiring the required information. In this regard, the ear structure has multiple advantages. Not only the ear´s biometric markers can be easily captured from the distance with non intrusive methods, but also they experiment almost no changes over time, and are not influenced by facial expressions. Here we present a new method based on Geometric Morphometrics and Deep Learning for automatic ear detection and feature extraction in the form of landmarks. A convolutional neural network was trained with a set of manually landmarked examples. The network is able to provide morphometric landmarks on ears´ images automatically, with a performance that matches human landmarking. The feasibility of using ear landmarks as feature vectors opens a novel spectrum of biometrics applications.
Fil: Cintas, Celia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico; Argentina
Fil: Quinto Sanchez, Mirsha Emmanuel. Universidad Nacional Autónoma de México; México. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Acuña,Victor. University College London; Estados Unidos
Fil: Paschetta, Carolina Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico; Argentina
Fil: de Azevedo, Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico; Argentina
Fil: Silva de Cerqueira, Caio Cesar. Estado de São Paulo. Superintendência da Polícia Técnico-Científica; Brasil
Fil: Ramallo, Virginia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico; Argentina
Fil: Gallo, Carla. Universidad Peruana Cayetano Heredia; Perú
Fil: Poletti, Giovanni. Universidad Peruana Cayetano Heredia; Perú
Fil: Bortolini, Maria Catira. Universidade Federal do Rio Grande do Sul; Brasil
Fil: Canizales Quinteros, Samuel. Universidad Nacional Autónoma de México; México
Fil: Rothhammer, Francisco. Universidad de Tarapacá; Chile
Fil: Bedoya, Gabriel. Universidad de Antioquia; Colombia
Fil: Ruiz Linares, Andres. Fudan University; China. Aix Marseille Université; Francia
Fil: González José, Rolando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico; Argentina
Fil: Delrieux, Claudio Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto Argentino de Oceanografía. Universidad Nacional del Sur. Instituto Argentino de Oceanografía; Argentina. Universidad Nacional del Sur; Argentina - Materia
-
Morfometria Geometrica
Deep Learning
Landmarks
Biometrics - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/39534
Ver los metadatos del registro completo
id |
CONICETDig_5ca05781bf4869ac67ed73e7ecee943a |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/39534 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Automatic ear detection and feature extraction using Geometric Morphometrics and Convolutional Neural NetworksCintas, CeliaQuinto Sanchez, Mirsha EmmanuelAcuña,VictorPaschetta, Carolina Andreade Azevedo, SoledadSilva de Cerqueira, Caio CesarRamallo, VirginiaGallo, CarlaPoletti, GiovanniBortolini, Maria CatiraCanizales Quinteros, SamuelRothhammer, FranciscoBedoya, GabrielRuiz Linares, AndresGonzález José, RolandoDelrieux, Claudio AugustoMorfometria GeometricaDeep LearningLandmarksBiometricshttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Accurate gathering of phenotypic information is a key aspect in several subject matters, including biometrics, biomedical analysis, forensics, and many other. Automatic identification of anatomical structures of biometric interest, such as fingerprints, iris patterns, or facial traits, are extensively used in applications like access control and anthropological research, all having in common the drawback of requiring intrusive means for acquiring the required information. In this regard, the ear structure has multiple advantages. Not only the ear´s biometric markers can be easily captured from the distance with non intrusive methods, but also they experiment almost no changes over time, and are not influenced by facial expressions. Here we present a new method based on Geometric Morphometrics and Deep Learning for automatic ear detection and feature extraction in the form of landmarks. A convolutional neural network was trained with a set of manually landmarked examples. The network is able to provide morphometric landmarks on ears´ images automatically, with a performance that matches human landmarking. The feasibility of using ear landmarks as feature vectors opens a novel spectrum of biometrics applications.Fil: Cintas, Celia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico; ArgentinaFil: Quinto Sanchez, Mirsha Emmanuel. Universidad Nacional Autónoma de México; México. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Acuña,Victor. University College London; Estados UnidosFil: Paschetta, Carolina Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico; ArgentinaFil: de Azevedo, Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico; ArgentinaFil: Silva de Cerqueira, Caio Cesar. Estado de São Paulo. Superintendência da Polícia Técnico-Científica; BrasilFil: Ramallo, Virginia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico; ArgentinaFil: Gallo, Carla. Universidad Peruana Cayetano Heredia; PerúFil: Poletti, Giovanni. Universidad Peruana Cayetano Heredia; PerúFil: Bortolini, Maria Catira. Universidade Federal do Rio Grande do Sul; BrasilFil: Canizales Quinteros, Samuel. Universidad Nacional Autónoma de México; MéxicoFil: Rothhammer, Francisco. Universidad de Tarapacá; ChileFil: Bedoya, Gabriel. Universidad de Antioquia; ColombiaFil: Ruiz Linares, Andres. Fudan University; China. Aix Marseille Université; FranciaFil: González José, Rolando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico; ArgentinaFil: Delrieux, Claudio Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto Argentino de Oceanografía. Universidad Nacional del Sur. Instituto Argentino de Oceanografía; Argentina. Universidad Nacional del Sur; ArgentinaThe Institution of Engineering and Technology2017-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/39534Cintas, Celia; Quinto Sanchez, Mirsha Emmanuel; Acuña,Victor; Paschetta, Carolina Andrea; de Azevedo, Soledad; et al.; Automatic ear detection and feature extraction using Geometric Morphometrics and Convolutional Neural Networks; The Institution of Engineering and Technology; IET Biometrics; 6; 3; 5-2017; 211-2232047-49382047-4946CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/ 10.1049/iet-bmt.2016.0002info:eu-repo/semantics/altIdentifier/url/http://ieeexplore.ieee.org/document/7898901/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:37:48Zoai:ri.conicet.gov.ar:11336/39534instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:37:49.139CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Automatic ear detection and feature extraction using Geometric Morphometrics and Convolutional Neural Networks |
title |
Automatic ear detection and feature extraction using Geometric Morphometrics and Convolutional Neural Networks |
spellingShingle |
Automatic ear detection and feature extraction using Geometric Morphometrics and Convolutional Neural Networks Cintas, Celia Morfometria Geometrica Deep Learning Landmarks Biometrics |
title_short |
Automatic ear detection and feature extraction using Geometric Morphometrics and Convolutional Neural Networks |
title_full |
Automatic ear detection and feature extraction using Geometric Morphometrics and Convolutional Neural Networks |
title_fullStr |
Automatic ear detection and feature extraction using Geometric Morphometrics and Convolutional Neural Networks |
title_full_unstemmed |
Automatic ear detection and feature extraction using Geometric Morphometrics and Convolutional Neural Networks |
title_sort |
Automatic ear detection and feature extraction using Geometric Morphometrics and Convolutional Neural Networks |
dc.creator.none.fl_str_mv |
Cintas, Celia Quinto Sanchez, Mirsha Emmanuel Acuña,Victor Paschetta, Carolina Andrea de Azevedo, Soledad Silva de Cerqueira, Caio Cesar Ramallo, Virginia Gallo, Carla Poletti, Giovanni Bortolini, Maria Catira Canizales Quinteros, Samuel Rothhammer, Francisco Bedoya, Gabriel Ruiz Linares, Andres González José, Rolando Delrieux, Claudio Augusto |
author |
Cintas, Celia |
author_facet |
Cintas, Celia Quinto Sanchez, Mirsha Emmanuel Acuña,Victor Paschetta, Carolina Andrea de Azevedo, Soledad Silva de Cerqueira, Caio Cesar Ramallo, Virginia Gallo, Carla Poletti, Giovanni Bortolini, Maria Catira Canizales Quinteros, Samuel Rothhammer, Francisco Bedoya, Gabriel Ruiz Linares, Andres González José, Rolando Delrieux, Claudio Augusto |
author_role |
author |
author2 |
Quinto Sanchez, Mirsha Emmanuel Acuña,Victor Paschetta, Carolina Andrea de Azevedo, Soledad Silva de Cerqueira, Caio Cesar Ramallo, Virginia Gallo, Carla Poletti, Giovanni Bortolini, Maria Catira Canizales Quinteros, Samuel Rothhammer, Francisco Bedoya, Gabriel Ruiz Linares, Andres González José, Rolando Delrieux, Claudio Augusto |
author2_role |
author author author author author author author author author author author author author author author |
dc.subject.none.fl_str_mv |
Morfometria Geometrica Deep Learning Landmarks Biometrics |
topic |
Morfometria Geometrica Deep Learning Landmarks Biometrics |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Accurate gathering of phenotypic information is a key aspect in several subject matters, including biometrics, biomedical analysis, forensics, and many other. Automatic identification of anatomical structures of biometric interest, such as fingerprints, iris patterns, or facial traits, are extensively used in applications like access control and anthropological research, all having in common the drawback of requiring intrusive means for acquiring the required information. In this regard, the ear structure has multiple advantages. Not only the ear´s biometric markers can be easily captured from the distance with non intrusive methods, but also they experiment almost no changes over time, and are not influenced by facial expressions. Here we present a new method based on Geometric Morphometrics and Deep Learning for automatic ear detection and feature extraction in the form of landmarks. A convolutional neural network was trained with a set of manually landmarked examples. The network is able to provide morphometric landmarks on ears´ images automatically, with a performance that matches human landmarking. The feasibility of using ear landmarks as feature vectors opens a novel spectrum of biometrics applications. Fil: Cintas, Celia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico; Argentina Fil: Quinto Sanchez, Mirsha Emmanuel. Universidad Nacional Autónoma de México; México. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Acuña,Victor. University College London; Estados Unidos Fil: Paschetta, Carolina Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico; Argentina Fil: de Azevedo, Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico; Argentina Fil: Silva de Cerqueira, Caio Cesar. Estado de São Paulo. Superintendência da Polícia Técnico-Científica; Brasil Fil: Ramallo, Virginia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico; Argentina Fil: Gallo, Carla. Universidad Peruana Cayetano Heredia; Perú Fil: Poletti, Giovanni. Universidad Peruana Cayetano Heredia; Perú Fil: Bortolini, Maria Catira. Universidade Federal do Rio Grande do Sul; Brasil Fil: Canizales Quinteros, Samuel. Universidad Nacional Autónoma de México; México Fil: Rothhammer, Francisco. Universidad de Tarapacá; Chile Fil: Bedoya, Gabriel. Universidad de Antioquia; Colombia Fil: Ruiz Linares, Andres. Fudan University; China. Aix Marseille Université; Francia Fil: González José, Rolando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico; Argentina Fil: Delrieux, Claudio Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto Argentino de Oceanografía. Universidad Nacional del Sur. Instituto Argentino de Oceanografía; Argentina. Universidad Nacional del Sur; Argentina |
description |
Accurate gathering of phenotypic information is a key aspect in several subject matters, including biometrics, biomedical analysis, forensics, and many other. Automatic identification of anatomical structures of biometric interest, such as fingerprints, iris patterns, or facial traits, are extensively used in applications like access control and anthropological research, all having in common the drawback of requiring intrusive means for acquiring the required information. In this regard, the ear structure has multiple advantages. Not only the ear´s biometric markers can be easily captured from the distance with non intrusive methods, but also they experiment almost no changes over time, and are not influenced by facial expressions. Here we present a new method based on Geometric Morphometrics and Deep Learning for automatic ear detection and feature extraction in the form of landmarks. A convolutional neural network was trained with a set of manually landmarked examples. The network is able to provide morphometric landmarks on ears´ images automatically, with a performance that matches human landmarking. The feasibility of using ear landmarks as feature vectors opens a novel spectrum of biometrics applications. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/39534 Cintas, Celia; Quinto Sanchez, Mirsha Emmanuel; Acuña,Victor; Paschetta, Carolina Andrea; de Azevedo, Soledad; et al.; Automatic ear detection and feature extraction using Geometric Morphometrics and Convolutional Neural Networks; The Institution of Engineering and Technology; IET Biometrics; 6; 3; 5-2017; 211-223 2047-4938 2047-4946 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/39534 |
identifier_str_mv |
Cintas, Celia; Quinto Sanchez, Mirsha Emmanuel; Acuña,Victor; Paschetta, Carolina Andrea; de Azevedo, Soledad; et al.; Automatic ear detection and feature extraction using Geometric Morphometrics and Convolutional Neural Networks; The Institution of Engineering and Technology; IET Biometrics; 6; 3; 5-2017; 211-223 2047-4938 2047-4946 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/ 10.1049/iet-bmt.2016.0002 info:eu-repo/semantics/altIdentifier/url/http://ieeexplore.ieee.org/document/7898901/ |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
The Institution of Engineering and Technology |
publisher.none.fl_str_mv |
The Institution of Engineering and Technology |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082853228511232 |
score |
13.22299 |