Automatic ear detection and segmentation over partially occluded profile face images
- Autores
- Cintas, Celia; Delrieux, Claudio Augusto; Navarro, Jose Pablo; Quinto-sánchez, Mirsha Emmanuel; Pazos, Bruno Alfredo; Gonzalez-Jose, Rolando
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- La detección automática del pabellón auditivo en imágenes y video, es una funcionalidad crecientemente requerida en varios contextos. Entre ellos podemos citar: identificación biométrica no invasiva, análisis biomédicos, estudios forenses, entre otros. En los sistemas de reconocimiento biométrico, la detección rápida y confiable del pabellón auditivo es un paso fundamental dentro del procesamiento. Las aproximaciones existentes con respecto a esta detección no son robustas, siendo susceptibles a fallas en la presencia de oclusiones parciales, accesorios como aros o piercings, o condiciones desfavorables en la cámara o la iluminación. Además, gran parte de los sistemas biométricos de la actualidad asumen que el dato de entrada será la región de interés que contiene el pabellón auditivo, lo cual limita su uso y reduce la exactitud global de reconocimiento. En este trabajo se evalúa el uso de redes convolucionales (Convolutional Neural Networks o CNNs) junto con Morfometría Geométrica para la detección automática del pabellón auditivo y la segmentación de los píxeles correspondientes al mismo mediante el uso de un algoritmo de Convex Hull. Luego del entrenamiento, la red CNN puede detectar el pabellón auditivo sobre imágenes de rostro en vista lateral, inclusive en la presencia de oclusiones parciales. Se analiza la performance del método de detección y segmentación de orejas sobre imágenes con oclusiones parciales correspondientes al conjunto de datos CVL.
Automated, non invasive ear detection in images and video is becoming increasingly required in several contexts, including nonivasive biometric identification, biomedical analysis, forensics, and many others. In biometric recognition systems, fast and robust ear de-tection is a crucial step within the recognition pipeline.Existing approaches to ear detection are susceptible to fail in the presence of typical everyday situations that prevent a crisp imaging of the ears, like partial occlusions, ear accessories, or uncontrolled camera and illumination conditions. Even more, most of the proposed solutions work efficiently only within a previously detected rectangular region of interest, which limits their applicability and lowers the accuracy of the overall detection. In this paper we evaluate the use of Convolutional Neural Networks (CNNs) together with Geometric Morphometrics (GM) for automatic ear detection in the presence of partial occlusions, and a Convex Hull algorithm for the ear area segmentation. A CNN was trained with a set of ear images landmarked by experts using GM to achieve high consistency. After training, the CNN is able to detect ears over profile faces, even in the presence of partial occlusions. We analyze the performance of the proposed ear detection and segmentation method over partially occluded ear images using the CVL Dataset.
Fil: Cintas, Celia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto Patagónico de Ciencias Sociales y Humanas; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; Argentina
Fil: Delrieux, Claudio Augusto. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Navarro, Jose Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto Patagónico de Ciencias Sociales y Humanas; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; Argentina
Fil: Quinto-sánchez, Mirsha Emmanuel. Universidad Nacional Autónoma de México; México
Fil: Pazos, Bruno Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto Patagónico de Ciencias Sociales y Humanas; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; Argentina. Universidad Nacional de la Patagonia "san Juan Bosco". Facultad de Ingenieria - Sede Trelew.; Argentina
Fil: Gonzalez-Jose, Rolando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto Patagónico de Ciencias Sociales y Humanas; Argentina - Materia
-
BIOMETRICS
CONVEX HULL
DEEP LEARNING
EAR DETECTION
OCCLUSSION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/118835
Ver los metadatos del registro completo
id |
CONICETDig_38d4557f4af6ac7ce324c08427d0bd31 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/118835 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Automatic ear detection and segmentation over partially occluded profile face imagesDetección y segmentación automática de oídos en imágenes de rostro con vista lateral parcialmente ocluıdaCintas, CeliaDelrieux, Claudio AugustoNavarro, Jose PabloQuinto-sánchez, Mirsha EmmanuelPazos, Bruno AlfredoGonzalez-Jose, RolandoBIOMETRICSCONVEX HULLDEEP LEARNINGEAR DETECTIONOCCLUSSIONhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1https://purl.org/becyt/ford/3.3https://purl.org/becyt/ford/3La detección automática del pabellón auditivo en imágenes y video, es una funcionalidad crecientemente requerida en varios contextos. Entre ellos podemos citar: identificación biométrica no invasiva, análisis biomédicos, estudios forenses, entre otros. En los sistemas de reconocimiento biométrico, la detección rápida y confiable del pabellón auditivo es un paso fundamental dentro del procesamiento. Las aproximaciones existentes con respecto a esta detección no son robustas, siendo susceptibles a fallas en la presencia de oclusiones parciales, accesorios como aros o piercings, o condiciones desfavorables en la cámara o la iluminación. Además, gran parte de los sistemas biométricos de la actualidad asumen que el dato de entrada será la región de interés que contiene el pabellón auditivo, lo cual limita su uso y reduce la exactitud global de reconocimiento. En este trabajo se evalúa el uso de redes convolucionales (Convolutional Neural Networks o CNNs) junto con Morfometría Geométrica para la detección automática del pabellón auditivo y la segmentación de los píxeles correspondientes al mismo mediante el uso de un algoritmo de Convex Hull. Luego del entrenamiento, la red CNN puede detectar el pabellón auditivo sobre imágenes de rostro en vista lateral, inclusive en la presencia de oclusiones parciales. Se analiza la performance del método de detección y segmentación de orejas sobre imágenes con oclusiones parciales correspondientes al conjunto de datos CVL.Automated, non invasive ear detection in images and video is becoming increasingly required in several contexts, including nonivasive biometric identification, biomedical analysis, forensics, and many others. In biometric recognition systems, fast and robust ear de-tection is a crucial step within the recognition pipeline.Existing approaches to ear detection are susceptible to fail in the presence of typical everyday situations that prevent a crisp imaging of the ears, like partial occlusions, ear accessories, or uncontrolled camera and illumination conditions. Even more, most of the proposed solutions work efficiently only within a previously detected rectangular region of interest, which limits their applicability and lowers the accuracy of the overall detection. In this paper we evaluate the use of Convolutional Neural Networks (CNNs) together with Geometric Morphometrics (GM) for automatic ear detection in the presence of partial occlusions, and a Convex Hull algorithm for the ear area segmentation. A CNN was trained with a set of ear images landmarked by experts using GM to achieve high consistency. After training, the CNN is able to detect ears over profile faces, even in the presence of partial occlusions. We analyze the performance of the proposed ear detection and segmentation method over partially occluded ear images using the CVL Dataset.Fil: Cintas, Celia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto Patagónico de Ciencias Sociales y Humanas; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; ArgentinaFil: Delrieux, Claudio Augusto. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Navarro, Jose Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto Patagónico de Ciencias Sociales y Humanas; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; ArgentinaFil: Quinto-sánchez, Mirsha Emmanuel. Universidad Nacional Autónoma de México; MéxicoFil: Pazos, Bruno Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto Patagónico de Ciencias Sociales y Humanas; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; Argentina. Universidad Nacional de la Patagonia "san Juan Bosco". Facultad de Ingenieria - Sede Trelew.; ArgentinaFil: Gonzalez-Jose, Rolando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto Patagónico de Ciencias Sociales y Humanas; ArgentinaUniversidad Nacional de La Plata. Facultad de Informática2019-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/118835Cintas, Celia; Delrieux, Claudio Augusto; Navarro, Jose Pablo; Quinto-sánchez, Mirsha Emmanuel; Pazos, Bruno Alfredo; et al.; Automatic ear detection and segmentation over partially occluded profile face images; Universidad Nacional de La Plata. Facultad de Informática; Journal of Computer Science and Technology; 19; 8; 4-2019; 81-901666-6038CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.24215/16666038.19.e08info:eu-repo/semantics/altIdentifier/url/https://journal.info.unlp.edu.ar/JCST/article/view/1097info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:41:56Zoai:ri.conicet.gov.ar:11336/118835instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:41:56.42CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Automatic ear detection and segmentation over partially occluded profile face images Detección y segmentación automática de oídos en imágenes de rostro con vista lateral parcialmente ocluıda |
title |
Automatic ear detection and segmentation over partially occluded profile face images |
spellingShingle |
Automatic ear detection and segmentation over partially occluded profile face images Cintas, Celia BIOMETRICS CONVEX HULL DEEP LEARNING EAR DETECTION OCCLUSSION |
title_short |
Automatic ear detection and segmentation over partially occluded profile face images |
title_full |
Automatic ear detection and segmentation over partially occluded profile face images |
title_fullStr |
Automatic ear detection and segmentation over partially occluded profile face images |
title_full_unstemmed |
Automatic ear detection and segmentation over partially occluded profile face images |
title_sort |
Automatic ear detection and segmentation over partially occluded profile face images |
dc.creator.none.fl_str_mv |
Cintas, Celia Delrieux, Claudio Augusto Navarro, Jose Pablo Quinto-sánchez, Mirsha Emmanuel Pazos, Bruno Alfredo Gonzalez-Jose, Rolando |
author |
Cintas, Celia |
author_facet |
Cintas, Celia Delrieux, Claudio Augusto Navarro, Jose Pablo Quinto-sánchez, Mirsha Emmanuel Pazos, Bruno Alfredo Gonzalez-Jose, Rolando |
author_role |
author |
author2 |
Delrieux, Claudio Augusto Navarro, Jose Pablo Quinto-sánchez, Mirsha Emmanuel Pazos, Bruno Alfredo Gonzalez-Jose, Rolando |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
BIOMETRICS CONVEX HULL DEEP LEARNING EAR DETECTION OCCLUSSION |
topic |
BIOMETRICS CONVEX HULL DEEP LEARNING EAR DETECTION OCCLUSSION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 https://purl.org/becyt/ford/3.3 https://purl.org/becyt/ford/3 |
dc.description.none.fl_txt_mv |
La detección automática del pabellón auditivo en imágenes y video, es una funcionalidad crecientemente requerida en varios contextos. Entre ellos podemos citar: identificación biométrica no invasiva, análisis biomédicos, estudios forenses, entre otros. En los sistemas de reconocimiento biométrico, la detección rápida y confiable del pabellón auditivo es un paso fundamental dentro del procesamiento. Las aproximaciones existentes con respecto a esta detección no son robustas, siendo susceptibles a fallas en la presencia de oclusiones parciales, accesorios como aros o piercings, o condiciones desfavorables en la cámara o la iluminación. Además, gran parte de los sistemas biométricos de la actualidad asumen que el dato de entrada será la región de interés que contiene el pabellón auditivo, lo cual limita su uso y reduce la exactitud global de reconocimiento. En este trabajo se evalúa el uso de redes convolucionales (Convolutional Neural Networks o CNNs) junto con Morfometría Geométrica para la detección automática del pabellón auditivo y la segmentación de los píxeles correspondientes al mismo mediante el uso de un algoritmo de Convex Hull. Luego del entrenamiento, la red CNN puede detectar el pabellón auditivo sobre imágenes de rostro en vista lateral, inclusive en la presencia de oclusiones parciales. Se analiza la performance del método de detección y segmentación de orejas sobre imágenes con oclusiones parciales correspondientes al conjunto de datos CVL. Automated, non invasive ear detection in images and video is becoming increasingly required in several contexts, including nonivasive biometric identification, biomedical analysis, forensics, and many others. In biometric recognition systems, fast and robust ear de-tection is a crucial step within the recognition pipeline.Existing approaches to ear detection are susceptible to fail in the presence of typical everyday situations that prevent a crisp imaging of the ears, like partial occlusions, ear accessories, or uncontrolled camera and illumination conditions. Even more, most of the proposed solutions work efficiently only within a previously detected rectangular region of interest, which limits their applicability and lowers the accuracy of the overall detection. In this paper we evaluate the use of Convolutional Neural Networks (CNNs) together with Geometric Morphometrics (GM) for automatic ear detection in the presence of partial occlusions, and a Convex Hull algorithm for the ear area segmentation. A CNN was trained with a set of ear images landmarked by experts using GM to achieve high consistency. After training, the CNN is able to detect ears over profile faces, even in the presence of partial occlusions. We analyze the performance of the proposed ear detection and segmentation method over partially occluded ear images using the CVL Dataset. Fil: Cintas, Celia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto Patagónico de Ciencias Sociales y Humanas; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; Argentina Fil: Delrieux, Claudio Augusto. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Navarro, Jose Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto Patagónico de Ciencias Sociales y Humanas; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; Argentina Fil: Quinto-sánchez, Mirsha Emmanuel. Universidad Nacional Autónoma de México; México Fil: Pazos, Bruno Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto Patagónico de Ciencias Sociales y Humanas; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; Argentina. Universidad Nacional de la Patagonia "san Juan Bosco". Facultad de Ingenieria - Sede Trelew.; Argentina Fil: Gonzalez-Jose, Rolando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto Patagónico de Ciencias Sociales y Humanas; Argentina |
description |
La detección automática del pabellón auditivo en imágenes y video, es una funcionalidad crecientemente requerida en varios contextos. Entre ellos podemos citar: identificación biométrica no invasiva, análisis biomédicos, estudios forenses, entre otros. En los sistemas de reconocimiento biométrico, la detección rápida y confiable del pabellón auditivo es un paso fundamental dentro del procesamiento. Las aproximaciones existentes con respecto a esta detección no son robustas, siendo susceptibles a fallas en la presencia de oclusiones parciales, accesorios como aros o piercings, o condiciones desfavorables en la cámara o la iluminación. Además, gran parte de los sistemas biométricos de la actualidad asumen que el dato de entrada será la región de interés que contiene el pabellón auditivo, lo cual limita su uso y reduce la exactitud global de reconocimiento. En este trabajo se evalúa el uso de redes convolucionales (Convolutional Neural Networks o CNNs) junto con Morfometría Geométrica para la detección automática del pabellón auditivo y la segmentación de los píxeles correspondientes al mismo mediante el uso de un algoritmo de Convex Hull. Luego del entrenamiento, la red CNN puede detectar el pabellón auditivo sobre imágenes de rostro en vista lateral, inclusive en la presencia de oclusiones parciales. Se analiza la performance del método de detección y segmentación de orejas sobre imágenes con oclusiones parciales correspondientes al conjunto de datos CVL. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/118835 Cintas, Celia; Delrieux, Claudio Augusto; Navarro, Jose Pablo; Quinto-sánchez, Mirsha Emmanuel; Pazos, Bruno Alfredo; et al.; Automatic ear detection and segmentation over partially occluded profile face images; Universidad Nacional de La Plata. Facultad de Informática; Journal of Computer Science and Technology; 19; 8; 4-2019; 81-90 1666-6038 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/118835 |
identifier_str_mv |
Cintas, Celia; Delrieux, Claudio Augusto; Navarro, Jose Pablo; Quinto-sánchez, Mirsha Emmanuel; Pazos, Bruno Alfredo; et al.; Automatic ear detection and segmentation over partially occluded profile face images; Universidad Nacional de La Plata. Facultad de Informática; Journal of Computer Science and Technology; 19; 8; 4-2019; 81-90 1666-6038 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.24215/16666038.19.e08 info:eu-repo/semantics/altIdentifier/url/https://journal.info.unlp.edu.ar/JCST/article/view/1097 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Universidad Nacional de La Plata. Facultad de Informática |
publisher.none.fl_str_mv |
Universidad Nacional de La Plata. Facultad de Informática |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082918809600000 |
score |
13.22299 |