Boar seminal plasma exosomes: Effect on sperm function and protein identification by sequencing

Autores
Piehl, Lidia Leonor; Fischman, Maria Laura; Hellman, Ulf; Cisale, Humberto Osvaldo; Miranda, Patricia Vivian
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Mammalian seminal plasma contains membranous vesicles (exosomes), with a high content of cholesterol and sphingomyelin and a complex protein composition. Their physiological role is uncertain because sperm stabilization and activation effects have been reported. To analyze a putative modulatory role for semen exosomes on sperm activity in the boar, the effects of these vesicles on several sperm functional parameters were examined. Additionally, boar exosome proteins were sequenced and their incorporation into sperm was explored. Boar sperm were incubated under conditions that induce capacitation, manifested as increased tyrosine phosphorylation, cholesterol loss and greater fluidity in apical membranes, and the ability to undergo the lysophosphatidylcholine-induced acrosome reaction. After establishing this cluster of capacitation-dependent functional parameters, the effect produced by exosomes when present during or after sperm capacitation was analyzed. Exosomes inhibited the capacitation-dependent cholesterol efflux and fluidity increase in apical membranes, and the disappearance of a 14-kD phosphorylated polypeptide. In contrast, the acrosome reaction (spontaneous and lysophosphatidylcholine-induced) was not affected, and sperm binding to the oocyte zona pellucida was reduced only when vesicles were present during gamete coincubation. Liposomes with a lipid composition similar to that present in exosomes mimicked these effects, except the one on zona pellucida binding. Interaction between exosomes and sperm was confirmed by transfer of aminopeptidase activity. In addition, the major exosome protein, identified as actin, appeared to associate with sperm after coincubation. Exosome composition had a predominance for structural proteins (actin, plastin, ezrin, and condensin), enzymes, and several porcine seminal plasma-specific polypeptides (e.g., spermadhesins). Transfer of proteins from exosome to sperm and their ability to block cholesterol efflux supports a direct interaction between these vesicles and sperm, whereas inhibition of some capacitation-dependent features suggests a stabilizing function for exosomes in boar semen.
Fil: Piehl, Lidia Leonor. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Bioquímica y Medicina Molecular. Universidad de Buenos Aires. Facultad Medicina. Instituto de Bioquímica y Medicina Molecular; Argentina
Fil: Fischman, Maria Laura. Universidad de Buenos Aires. Facultad de Ciencias Veterinarias. Instituto de Investigacion y Tecnología en Reproducción Animal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Hellman, Ulf. Ludwig Institute for Cancer Research; Suecia
Fil: Cisale, Humberto Osvaldo. Universidad de Buenos Aires. Facultad de Ciencias Veterinarias. Instituto de Investigacion y Tecnología en Reproducción Animal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Miranda, Patricia Vivian. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina
Materia
BOAR
EXOSOME
PROSTASOME
SEMINAL PLASMA
SPERM CAPACITATION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/94335

id CONICETDig_5c9da0693922ff830dca06b3ac169c1e
oai_identifier_str oai:ri.conicet.gov.ar:11336/94335
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Boar seminal plasma exosomes: Effect on sperm function and protein identification by sequencingPiehl, Lidia LeonorFischman, Maria LauraHellman, UlfCisale, Humberto OsvaldoMiranda, Patricia VivianBOAREXOSOMEPROSTASOMESEMINAL PLASMASPERM CAPACITATIONhttps://purl.org/becyt/ford/4.3https://purl.org/becyt/ford/4Mammalian seminal plasma contains membranous vesicles (exosomes), with a high content of cholesterol and sphingomyelin and a complex protein composition. Their physiological role is uncertain because sperm stabilization and activation effects have been reported. To analyze a putative modulatory role for semen exosomes on sperm activity in the boar, the effects of these vesicles on several sperm functional parameters were examined. Additionally, boar exosome proteins were sequenced and their incorporation into sperm was explored. Boar sperm were incubated under conditions that induce capacitation, manifested as increased tyrosine phosphorylation, cholesterol loss and greater fluidity in apical membranes, and the ability to undergo the lysophosphatidylcholine-induced acrosome reaction. After establishing this cluster of capacitation-dependent functional parameters, the effect produced by exosomes when present during or after sperm capacitation was analyzed. Exosomes inhibited the capacitation-dependent cholesterol efflux and fluidity increase in apical membranes, and the disappearance of a 14-kD phosphorylated polypeptide. In contrast, the acrosome reaction (spontaneous and lysophosphatidylcholine-induced) was not affected, and sperm binding to the oocyte zona pellucida was reduced only when vesicles were present during gamete coincubation. Liposomes with a lipid composition similar to that present in exosomes mimicked these effects, except the one on zona pellucida binding. Interaction between exosomes and sperm was confirmed by transfer of aminopeptidase activity. In addition, the major exosome protein, identified as actin, appeared to associate with sperm after coincubation. Exosome composition had a predominance for structural proteins (actin, plastin, ezrin, and condensin), enzymes, and several porcine seminal plasma-specific polypeptides (e.g., spermadhesins). Transfer of proteins from exosome to sperm and their ability to block cholesterol efflux supports a direct interaction between these vesicles and sperm, whereas inhibition of some capacitation-dependent features suggests a stabilizing function for exosomes in boar semen.Fil: Piehl, Lidia Leonor. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Bioquímica y Medicina Molecular. Universidad de Buenos Aires. Facultad Medicina. Instituto de Bioquímica y Medicina Molecular; ArgentinaFil: Fischman, Maria Laura. Universidad de Buenos Aires. Facultad de Ciencias Veterinarias. Instituto de Investigacion y Tecnología en Reproducción Animal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Hellman, Ulf. Ludwig Institute for Cancer Research; SueciaFil: Cisale, Humberto Osvaldo. Universidad de Buenos Aires. Facultad de Ciencias Veterinarias. Instituto de Investigacion y Tecnología en Reproducción Animal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Miranda, Patricia Vivian. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaElsevier Science Inc2013-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/94335Piehl, Lidia Leonor; Fischman, Maria Laura; Hellman, Ulf; Cisale, Humberto Osvaldo; Miranda, Patricia Vivian; Boar seminal plasma exosomes: Effect on sperm function and protein identification by sequencing; Elsevier Science Inc; Theriogenology; 79; 7; 4-2013; 1071-10820093-691XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0093691X13000502info:eu-repo/semantics/altIdentifier/doi/10.1016/j.theriogenology.2013.01.028info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:36:01Zoai:ri.conicet.gov.ar:11336/94335instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:36:01.566CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Boar seminal plasma exosomes: Effect on sperm function and protein identification by sequencing
title Boar seminal plasma exosomes: Effect on sperm function and protein identification by sequencing
spellingShingle Boar seminal plasma exosomes: Effect on sperm function and protein identification by sequencing
Piehl, Lidia Leonor
BOAR
EXOSOME
PROSTASOME
SEMINAL PLASMA
SPERM CAPACITATION
title_short Boar seminal plasma exosomes: Effect on sperm function and protein identification by sequencing
title_full Boar seminal plasma exosomes: Effect on sperm function and protein identification by sequencing
title_fullStr Boar seminal plasma exosomes: Effect on sperm function and protein identification by sequencing
title_full_unstemmed Boar seminal plasma exosomes: Effect on sperm function and protein identification by sequencing
title_sort Boar seminal plasma exosomes: Effect on sperm function and protein identification by sequencing
dc.creator.none.fl_str_mv Piehl, Lidia Leonor
Fischman, Maria Laura
Hellman, Ulf
Cisale, Humberto Osvaldo
Miranda, Patricia Vivian
author Piehl, Lidia Leonor
author_facet Piehl, Lidia Leonor
Fischman, Maria Laura
Hellman, Ulf
Cisale, Humberto Osvaldo
Miranda, Patricia Vivian
author_role author
author2 Fischman, Maria Laura
Hellman, Ulf
Cisale, Humberto Osvaldo
Miranda, Patricia Vivian
author2_role author
author
author
author
dc.subject.none.fl_str_mv BOAR
EXOSOME
PROSTASOME
SEMINAL PLASMA
SPERM CAPACITATION
topic BOAR
EXOSOME
PROSTASOME
SEMINAL PLASMA
SPERM CAPACITATION
purl_subject.fl_str_mv https://purl.org/becyt/ford/4.3
https://purl.org/becyt/ford/4
dc.description.none.fl_txt_mv Mammalian seminal plasma contains membranous vesicles (exosomes), with a high content of cholesterol and sphingomyelin and a complex protein composition. Their physiological role is uncertain because sperm stabilization and activation effects have been reported. To analyze a putative modulatory role for semen exosomes on sperm activity in the boar, the effects of these vesicles on several sperm functional parameters were examined. Additionally, boar exosome proteins were sequenced and their incorporation into sperm was explored. Boar sperm were incubated under conditions that induce capacitation, manifested as increased tyrosine phosphorylation, cholesterol loss and greater fluidity in apical membranes, and the ability to undergo the lysophosphatidylcholine-induced acrosome reaction. After establishing this cluster of capacitation-dependent functional parameters, the effect produced by exosomes when present during or after sperm capacitation was analyzed. Exosomes inhibited the capacitation-dependent cholesterol efflux and fluidity increase in apical membranes, and the disappearance of a 14-kD phosphorylated polypeptide. In contrast, the acrosome reaction (spontaneous and lysophosphatidylcholine-induced) was not affected, and sperm binding to the oocyte zona pellucida was reduced only when vesicles were present during gamete coincubation. Liposomes with a lipid composition similar to that present in exosomes mimicked these effects, except the one on zona pellucida binding. Interaction between exosomes and sperm was confirmed by transfer of aminopeptidase activity. In addition, the major exosome protein, identified as actin, appeared to associate with sperm after coincubation. Exosome composition had a predominance for structural proteins (actin, plastin, ezrin, and condensin), enzymes, and several porcine seminal plasma-specific polypeptides (e.g., spermadhesins). Transfer of proteins from exosome to sperm and their ability to block cholesterol efflux supports a direct interaction between these vesicles and sperm, whereas inhibition of some capacitation-dependent features suggests a stabilizing function for exosomes in boar semen.
Fil: Piehl, Lidia Leonor. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Bioquímica y Medicina Molecular. Universidad de Buenos Aires. Facultad Medicina. Instituto de Bioquímica y Medicina Molecular; Argentina
Fil: Fischman, Maria Laura. Universidad de Buenos Aires. Facultad de Ciencias Veterinarias. Instituto de Investigacion y Tecnología en Reproducción Animal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Hellman, Ulf. Ludwig Institute for Cancer Research; Suecia
Fil: Cisale, Humberto Osvaldo. Universidad de Buenos Aires. Facultad de Ciencias Veterinarias. Instituto de Investigacion y Tecnología en Reproducción Animal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Miranda, Patricia Vivian. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina
description Mammalian seminal plasma contains membranous vesicles (exosomes), with a high content of cholesterol and sphingomyelin and a complex protein composition. Their physiological role is uncertain because sperm stabilization and activation effects have been reported. To analyze a putative modulatory role for semen exosomes on sperm activity in the boar, the effects of these vesicles on several sperm functional parameters were examined. Additionally, boar exosome proteins were sequenced and their incorporation into sperm was explored. Boar sperm were incubated under conditions that induce capacitation, manifested as increased tyrosine phosphorylation, cholesterol loss and greater fluidity in apical membranes, and the ability to undergo the lysophosphatidylcholine-induced acrosome reaction. After establishing this cluster of capacitation-dependent functional parameters, the effect produced by exosomes when present during or after sperm capacitation was analyzed. Exosomes inhibited the capacitation-dependent cholesterol efflux and fluidity increase in apical membranes, and the disappearance of a 14-kD phosphorylated polypeptide. In contrast, the acrosome reaction (spontaneous and lysophosphatidylcholine-induced) was not affected, and sperm binding to the oocyte zona pellucida was reduced only when vesicles were present during gamete coincubation. Liposomes with a lipid composition similar to that present in exosomes mimicked these effects, except the one on zona pellucida binding. Interaction between exosomes and sperm was confirmed by transfer of aminopeptidase activity. In addition, the major exosome protein, identified as actin, appeared to associate with sperm after coincubation. Exosome composition had a predominance for structural proteins (actin, plastin, ezrin, and condensin), enzymes, and several porcine seminal plasma-specific polypeptides (e.g., spermadhesins). Transfer of proteins from exosome to sperm and their ability to block cholesterol efflux supports a direct interaction between these vesicles and sperm, whereas inhibition of some capacitation-dependent features suggests a stabilizing function for exosomes in boar semen.
publishDate 2013
dc.date.none.fl_str_mv 2013-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/94335
Piehl, Lidia Leonor; Fischman, Maria Laura; Hellman, Ulf; Cisale, Humberto Osvaldo; Miranda, Patricia Vivian; Boar seminal plasma exosomes: Effect on sperm function and protein identification by sequencing; Elsevier Science Inc; Theriogenology; 79; 7; 4-2013; 1071-1082
0093-691X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/94335
identifier_str_mv Piehl, Lidia Leonor; Fischman, Maria Laura; Hellman, Ulf; Cisale, Humberto Osvaldo; Miranda, Patricia Vivian; Boar seminal plasma exosomes: Effect on sperm function and protein identification by sequencing; Elsevier Science Inc; Theriogenology; 79; 7; 4-2013; 1071-1082
0093-691X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0093691X13000502
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.theriogenology.2013.01.028
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science Inc
publisher.none.fl_str_mv Elsevier Science Inc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613126494879744
score 13.070432