Hyperbolic/elliptic‐ CAP formulation for FRCC based on microplane constitutive theory

Autores
Caggiano, Antonio; Vrech, Sonia Mariel; Etse, Jose Guillermo
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The present work describes an elasto-plastic constitutive formulation aimed at simulating the failure behavior of Fiber Reinforced Cementitious Composites (FRCCs). This proposal, based on the Microplane Theory and Smeared Crack Approach (SCA), assumes a hyperbolic maximum strength criterion for the cementitious matrix in terms of normal and shear (micro-)stresses, evaluated on generally oriented planes (microplanes). A combination of an associated/ non-associated plastic flow rule in conjunction with a fracture energy-based softening law is defined to complete the modeling approach. The Mixture Theory is applied with the aim of characterizing the fiber-to-concrete interactions, described by considering two fundamental interaction phenomena: bridging debonding effects and dowel actions. Numerical analysis of FRCC failure behavior at the constitutive level is performed. Particularly, the soundness and capabilities of this approach are assessed against experimental data from tensile, shear, and compressive tests on FRCC samples. Simple shear tests are also evaluated to analyze the influence of the microplanes approximation over the unit microplane hemisphere. Comparisons against a discontinuous zero-thickness interface model are proposed. Numerical results also illustrate the capabilities of the proposed constitutive theory to reproduce brittle or localized failure modes in limit stress states through discontinuous bifurcation analysis.
Fil: Caggiano, Antonio. Universidad de Genova; España
Fil: Vrech, Sonia Mariel. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina
Fil: Etse, Jose Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Centro de Métodos Numéricos y Computacionales en Ingeniería; Argentina
Materia
concrete
failure
fibers
FRCC
microplanes
mixture
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/252671

id CONICETDig_5c91f79392c120a81f321b06513c8173
oai_identifier_str oai:ri.conicet.gov.ar:11336/252671
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Hyperbolic/elliptic‐ CAP formulation for FRCC based on microplane constitutive theoryCaggiano, AntonioVrech, Sonia MarielEtse, Jose GuillermoconcretefailurefibersFRCCmicroplanesmixturehttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2The present work describes an elasto-plastic constitutive formulation aimed at simulating the failure behavior of Fiber Reinforced Cementitious Composites (FRCCs). This proposal, based on the Microplane Theory and Smeared Crack Approach (SCA), assumes a hyperbolic maximum strength criterion for the cementitious matrix in terms of normal and shear (micro-)stresses, evaluated on generally oriented planes (microplanes). A combination of an associated/ non-associated plastic flow rule in conjunction with a fracture energy-based softening law is defined to complete the modeling approach. The Mixture Theory is applied with the aim of characterizing the fiber-to-concrete interactions, described by considering two fundamental interaction phenomena: bridging debonding effects and dowel actions. Numerical analysis of FRCC failure behavior at the constitutive level is performed. Particularly, the soundness and capabilities of this approach are assessed against experimental data from tensile, shear, and compressive tests on FRCC samples. Simple shear tests are also evaluated to analyze the influence of the microplanes approximation over the unit microplane hemisphere. Comparisons against a discontinuous zero-thickness interface model are proposed. Numerical results also illustrate the capabilities of the proposed constitutive theory to reproduce brittle or localized failure modes in limit stress states through discontinuous bifurcation analysis.Fil: Caggiano, Antonio. Universidad de Genova; EspañaFil: Vrech, Sonia Mariel. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; ArgentinaFil: Etse, Jose Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Centro de Métodos Numéricos y Computacionales en Ingeniería; ArgentinaWiley2024-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/252671Caggiano, Antonio; Vrech, Sonia Mariel; Etse, Jose Guillermo; Hyperbolic/elliptic‐ CAP formulation for FRCC based on microplane constitutive theory; Wiley; Structural Concrete; 11-2024; 1-201464-41771751-7648CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1002/suco.202300875info:eu-repo/semantics/altIdentifier/doi/10.1002/suco.202300875info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:32:29Zoai:ri.conicet.gov.ar:11336/252671instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:32:29.926CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Hyperbolic/elliptic‐ CAP formulation for FRCC based on microplane constitutive theory
title Hyperbolic/elliptic‐ CAP formulation for FRCC based on microplane constitutive theory
spellingShingle Hyperbolic/elliptic‐ CAP formulation for FRCC based on microplane constitutive theory
Caggiano, Antonio
concrete
failure
fibers
FRCC
microplanes
mixture
title_short Hyperbolic/elliptic‐ CAP formulation for FRCC based on microplane constitutive theory
title_full Hyperbolic/elliptic‐ CAP formulation for FRCC based on microplane constitutive theory
title_fullStr Hyperbolic/elliptic‐ CAP formulation for FRCC based on microplane constitutive theory
title_full_unstemmed Hyperbolic/elliptic‐ CAP formulation for FRCC based on microplane constitutive theory
title_sort Hyperbolic/elliptic‐ CAP formulation for FRCC based on microplane constitutive theory
dc.creator.none.fl_str_mv Caggiano, Antonio
Vrech, Sonia Mariel
Etse, Jose Guillermo
author Caggiano, Antonio
author_facet Caggiano, Antonio
Vrech, Sonia Mariel
Etse, Jose Guillermo
author_role author
author2 Vrech, Sonia Mariel
Etse, Jose Guillermo
author2_role author
author
dc.subject.none.fl_str_mv concrete
failure
fibers
FRCC
microplanes
mixture
topic concrete
failure
fibers
FRCC
microplanes
mixture
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.5
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv The present work describes an elasto-plastic constitutive formulation aimed at simulating the failure behavior of Fiber Reinforced Cementitious Composites (FRCCs). This proposal, based on the Microplane Theory and Smeared Crack Approach (SCA), assumes a hyperbolic maximum strength criterion for the cementitious matrix in terms of normal and shear (micro-)stresses, evaluated on generally oriented planes (microplanes). A combination of an associated/ non-associated plastic flow rule in conjunction with a fracture energy-based softening law is defined to complete the modeling approach. The Mixture Theory is applied with the aim of characterizing the fiber-to-concrete interactions, described by considering two fundamental interaction phenomena: bridging debonding effects and dowel actions. Numerical analysis of FRCC failure behavior at the constitutive level is performed. Particularly, the soundness and capabilities of this approach are assessed against experimental data from tensile, shear, and compressive tests on FRCC samples. Simple shear tests are also evaluated to analyze the influence of the microplanes approximation over the unit microplane hemisphere. Comparisons against a discontinuous zero-thickness interface model are proposed. Numerical results also illustrate the capabilities of the proposed constitutive theory to reproduce brittle or localized failure modes in limit stress states through discontinuous bifurcation analysis.
Fil: Caggiano, Antonio. Universidad de Genova; España
Fil: Vrech, Sonia Mariel. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina
Fil: Etse, Jose Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Centro de Métodos Numéricos y Computacionales en Ingeniería; Argentina
description The present work describes an elasto-plastic constitutive formulation aimed at simulating the failure behavior of Fiber Reinforced Cementitious Composites (FRCCs). This proposal, based on the Microplane Theory and Smeared Crack Approach (SCA), assumes a hyperbolic maximum strength criterion for the cementitious matrix in terms of normal and shear (micro-)stresses, evaluated on generally oriented planes (microplanes). A combination of an associated/ non-associated plastic flow rule in conjunction with a fracture energy-based softening law is defined to complete the modeling approach. The Mixture Theory is applied with the aim of characterizing the fiber-to-concrete interactions, described by considering two fundamental interaction phenomena: bridging debonding effects and dowel actions. Numerical analysis of FRCC failure behavior at the constitutive level is performed. Particularly, the soundness and capabilities of this approach are assessed against experimental data from tensile, shear, and compressive tests on FRCC samples. Simple shear tests are also evaluated to analyze the influence of the microplanes approximation over the unit microplane hemisphere. Comparisons against a discontinuous zero-thickness interface model are proposed. Numerical results also illustrate the capabilities of the proposed constitutive theory to reproduce brittle or localized failure modes in limit stress states through discontinuous bifurcation analysis.
publishDate 2024
dc.date.none.fl_str_mv 2024-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/252671
Caggiano, Antonio; Vrech, Sonia Mariel; Etse, Jose Guillermo; Hyperbolic/elliptic‐ CAP formulation for FRCC based on microplane constitutive theory; Wiley; Structural Concrete; 11-2024; 1-20
1464-4177
1751-7648
CONICET Digital
CONICET
url http://hdl.handle.net/11336/252671
identifier_str_mv Caggiano, Antonio; Vrech, Sonia Mariel; Etse, Jose Guillermo; Hyperbolic/elliptic‐ CAP formulation for FRCC based on microplane constitutive theory; Wiley; Structural Concrete; 11-2024; 1-20
1464-4177
1751-7648
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1002/suco.202300875
info:eu-repo/semantics/altIdentifier/doi/10.1002/suco.202300875
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Wiley
publisher.none.fl_str_mv Wiley
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844612991095406592
score 13.070432